These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31998260)

  • 1. Potential TMA-Producing Bacteria Are Ubiquitously Found in Mammalia.
    Rath S; Rud T; Pieper DH; Vital M
    Front Microbiol; 2019; 10():2966. PubMed ID: 31998260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the trimethylamine-producing bacteria of the human gut microbiota.
    Rath S; Heidrich B; Pieper DH; Vital M
    Microbiome; 2017 May; 5(1):54. PubMed ID: 28506279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary Methionine Restriction Alleviates Choline-Induced Tri-Methylamine-N-Oxide (TMAO) Elevation by Manipulating Gut Microbiota in Mice.
    Lu M; Yang Y; Xu Y; Wang X; Li B; Le G; Xie Y
    Nutrients; 2023 Jan; 15(1):. PubMed ID: 36615863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Inulin-Type Fructans on Plasma Trimethylamine N-Oxide Levels in Peritoneal Dialysis Patients: A Randomized Crossover Trial.
    Xiong Q; Li L; Xiao Y; He S; Zhao J; Lin X; He Y; Wang J; Guo X; Liang W; Zuo X; Ying C
    Mol Nutr Food Res; 2023 May; 67(9):e2200531. PubMed ID: 36855809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urinary TMAO Levels Are Associated with the Taxonomic Composition of the Gut Microbiota and with the Choline TMA-Lyase Gene (
    Dalla Via A; Gargari G; Taverniti V; Rondini G; Velardi I; Gambaro V; Visconti GL; De Vitis V; Gardana C; Ragg E; Pinto A; Riso P; Guglielmetti S
    Nutrients; 2019 Dec; 12(1):. PubMed ID: 31881690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.
    Romano KA; Vivas EI; Amador-Noguez D; Rey FE
    mBio; 2015 Mar; 6(2):e02481. PubMed ID: 25784704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher Trimethylamine-
    Rath S; Rox K; Kleine Bardenhorst S; Schminke U; Dörr M; Mayerle J; Frost F; Lerch MM; Karch A; Brönstrup M; Pieper DH; Vital M
    mSystems; 2021 Oct; 6(5):e0094521. PubMed ID: 34519520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism.
    Pathak P; Helsley RN; Brown AL; Buffa JA; Choucair I; Nemet I; Gogonea CB; Gogonea V; Wang Z; Garcia-Garcia JC; Cai L; Temel R; Sangwan N; Hazen SL; Brown JM
    Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1474-H1486. PubMed ID: 32330092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut.
    Jameson E; Quareshy M; Chen Y
    Methods; 2018 Oct; 149():42-48. PubMed ID: 29684641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome.
    Li X; Su C; Jiang Z; Yang Y; Zhang Y; Yang M; Zhang X; Du Y; Zhang J; Wang L; Jiang J; Hong B
    NPJ Biofilms Microbiomes; 2021 Apr; 7(1):36. PubMed ID: 33863898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans.
    Koeth RA; Lam-Galvez BR; Kirsop J; Wang Z; Levison BS; Gu X; Copeland MF; Bartlett D; Cody DB; Dai HJ; Culley MK; Li XS; Fu X; Wu Y; Li L; DiDonato JA; Tang WHW; Garcia-Garcia JC; Hazen SL
    J Clin Invest; 2019 Jan; 129(1):373-387. PubMed ID: 30530985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
    Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M
    Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gene expression and bioinformatic analysis of choline trimethylamine-lyase
    Ramireddy L; Tsen HY; Chiang YC; Hung CY; Chen FC; Yen HT
    Curr Res Microb Sci; 2021 Dec; 2():100043. PubMed ID: 34841334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenomic analysis of gut microbiota reveals its role in trimethylamine metabolism in heart failure.
    Emoto T; Hayashi T; Tabata T; Yamashita T; Watanabe H; Takahashi T; Gotoh Y; Kami K; Yoshida N; Saito Y; Tanaka H; Matsumoto K; Hayashi T; Yamada T; Hirata KI
    Int J Cardiol; 2021 Sep; 338():138-142. PubMed ID: 34102245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential.
    Skye SM; Zhu W; Romano KA; Guo CJ; Wang Z; Jia X; Kirsop J; Haag B; Lang JM; DiDonato JA; Tang WHW; Lusis AJ; Rey FE; Fischbach MA; Hazen SL
    Circ Res; 2018 Oct; 123(10):1164-1176. PubMed ID: 30359185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagenomic data-mining reveals enrichment of trimethylamine-N-oxide synthesis in gut microbiome in atrial fibrillation patients.
    Zuo K; Liu X; Wang P; Jiao J; Han C; Liu Z; Yin X; Li J; Yang X
    BMC Genomics; 2020 Jul; 21(1):526. PubMed ID: 32731896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis.
    Cai YY; Huang FQ; Lao X; Lu Y; Gao X; Alolga RN; Yin K; Zhou X; Wang Y; Liu B; Shang J; Qi LW; Li J
    NPJ Biofilms Microbiomes; 2022 Mar; 8(1):11. PubMed ID: 35273169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations.
    Malinowska AM; Szwengiel A; Chmurzynska A
    Int J Food Sci Nutr; 2017 Jun; 68(4):488-495. PubMed ID: 27855528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems.
    Jameson E; Doxey AC; Airs R; Purdy KJ; Murrell JC; Chen Y
    Microb Genom; 2016 Sep; 2(9):e000080. PubMed ID: 28785417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CntA oxygenase substrate profile comparison and oxygen dependency of TMA production in Providencia rettgeri.
    Kalnins G; Sevostjanovs E; Hartmane D; Grinberga S; Tars K
    J Basic Microbiol; 2018 Jan; 58(1):52-59. PubMed ID: 29110324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.