These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31998331)

  • 1. Automated Methods Enable Direct Computation on Phenotypic Descriptions for Novel Candidate Gene Prediction.
    Braun IR; Lawrence-Dill CJ
    Front Plant Sci; 2019; 10():1629. PubMed ID: 31998331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature.
    Dahdul WM; Balhoff JP; Engeman J; Grande T; Hilton EJ; Kothari C; Lapp H; Lundberg JG; Midford PE; Vision TJ; Westerfield M; Mabee PM
    PLoS One; 2010 May; 5(5):e10708. PubMed ID: 20505755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing on Phenotypic Descriptions for Candidate Gene Discovery and Crop Improvement.
    Braun IR; Yanarella CF; Lawrence-Dill CJ
    Plant Phenomics; 2020; 2020():1963251. PubMed ID: 33313544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2019 Jun; 35(12):2133-2140. PubMed ID: 30407490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Annotation of phenotypes using ontologies: a gold standard for the training and evaluation of natural language processing systems.
    Dahdul W; Manda P; Cui H; Balhoff JP; Dececchi TA; Ibrahim N; Lapp H; Vision T; Mabee PM
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30576485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking human diseases to animal models using ontology-based phenotype annotation.
    Washington NL; Haendel MA; Mungall CJ; Ashburner M; Westerfield M; Lewis SE
    PLoS Biol; 2009 Nov; 7(11):e1000247. PubMed ID: 19956802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatically transforming pre- to post-composed phenotypes: EQ-lising HPO and MP.
    Oellrich A; Grabmüller C; Rebholz-Schuhmann D
    J Biomed Semantics; 2013 Oct; 4(1):29. PubMed ID: 24131519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhenoGO: assigning phenotypic context to gene ontology annotations with natural language processing.
    Lussier Y; Borlawsky T; Rappaport D; Liu Y; Friedman C
    Pac Symp Biocomput; 2006; ():64-75. PubMed ID: 17094228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computable visually observed phenotype ontological framework for plants.
    Harnsomburana J; Green JM; Barb AS; Schaeffer M; Vincent L; Shyu CR
    BMC Bioinformatics; 2011 Jun; 12():260. PubMed ID: 21702966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text.
    Park A; Hartzler AL; Huh J; McDonald DW; Pratt W
    J Med Internet Res; 2015 Aug; 17(8):e212. PubMed ID: 26323337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial phenomics information extractor (MicroPIE): a natural language processing tool for the automated acquisition of prokaryotic phenotypic characters from text sources.
    Mao J; Moore LR; Blank CE; Wu EH; Ackerman M; Ranade S; Cui H
    BMC Bioinformatics; 2016 Dec; 17(1):528. PubMed ID: 27955641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural sentence embedding models for semantic similarity estimation in the biomedical domain.
    Blagec K; Xu H; Agibetov A; Samwald M
    BMC Bioinformatics; 2019 Apr; 20(1):178. PubMed ID: 30975071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incentivising use of structured language in biological descriptions: Author-driven phenotype data and ontology production.
    Cui H; Macklin JA; Sachs J; Reznicek A; Starr J; Ford B; Penev L; Chen HL
    Biodivers Data J; 2018; (6):e29616. PubMed ID: 30473620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring semantic similarity of clinical trial outcomes using deep pre-trained language representations.
    Koroleva A; Kamath S; Paroubek P
    J Biomed Inform; 2019; 100S():100058. PubMed ID: 34384580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ontology approach to comparative phenomics in plants.
    Oellrich A; Walls RL; Cannon EK; Cannon SB; Cooper L; Gardiner J; Gkoutos GV; Harper L; He M; Hoehndorf R; Jaiswal P; Kalberer SR; Lloyd JP; Meinke D; Menda N; Moore L; Nelson RT; Pujar A; Lawrence CJ; Huala E
    Plant Methods; 2015; 11():10. PubMed ID: 25774204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards improving phenotype representation in OWL.
    Loebe F; Stumpf F; Hoehndorf R; Herre H
    J Biomed Semantics; 2012 Sep; 3 Suppl 2(Suppl 2):S5. PubMed ID: 23046625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corpus domain effects on distributional semantic modeling of medical terms.
    Pakhomov SV; Finley G; McEwan R; Wang Y; Melton GB
    Bioinformatics; 2016 Dec; 32(23):3635-3644. PubMed ID: 27531100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards automated clinical coding.
    Catling F; Spithourakis GP; Riedel S
    Int J Med Inform; 2018 Dec; 120():50-61. PubMed ID: 30409346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic tissue annotations of genomics samples by modeling unstructured metadata.
    Hawkins NT; Maldaver M; Yannakopoulos A; Guare LA; Krishnan A
    Nat Commun; 2022 Nov; 13(1):6736. PubMed ID: 36347858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.