These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31998402)

  • 1. Fast photosynthesis measurements for phenotyping photosynthetic capacity of rice.
    Du T; Meng P; Huang J; Peng S; Xiong D
    Plant Methods; 2020; 16():6. PubMed ID: 31998402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring natural genetic diversity in a bread wheat multi-founder population: Dual imaging of photosynthesis and stomatal kinetics.
    Faralli M; Mellers G; Wall S; Vialet-Chabrand S; Forget G; Galle A; Van Rie J; Gardner KA; Ober ES; Cockram J; Lawson T
    J Exp Bot; 2024 May; ():. PubMed ID: 38795361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in situ approach to characterizing photosynthetic gas exchange of rice panicle.
    Chang TG; Song QF; Zhao HL; Chang S; Xin C; Qu M; Zhu XG
    Plant Methods; 2020; 16():92. PubMed ID: 32647532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MIC-100, a new system for high-throughput phenotyping of instantaneous leaf photosynthetic rate in the field.
    Tanaka Y; Taniyoshi K; Imamura A; Mukai R; Sukemura S; Sakoda K; Adachi S
    Funct Plant Biol; 2022 May; 49(6):496-504. PubMed ID: 34090541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum.
    Geber MA; Dawson TE
    Oecologia; 1997 Feb; 109(4):535-546. PubMed ID: 28307337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions.
    Gu J; Yin X; Struik PC; Stomph TJ; Wang H
    J Exp Bot; 2012 Jan; 63(1):455-69. PubMed ID: 21984650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966.
    Hubbart S; Peng S; Horton P; Chen Y; Murchie EH
    J Exp Bot; 2007; 58(12):3429-38. PubMed ID: 17875814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in photosynthetic induction between super hybrid rice and inbred super rice.
    Pan Y; Du H; Meng X; Guo S
    Plant Physiol Biochem; 2022 May; 178():105-115. PubMed ID: 35279007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf photosynthetic plasticity does not predict biomass responses to growth irradiance in rice.
    Chen L; Luo W; Huang J; Peng S; Xiong D
    Physiol Plant; 2021 Dec; 173(4):2155-2165. PubMed ID: 34537975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data assessing genotypic variations in selected traditional rice landraces of Jeypore tract of Odisha, India based on photosynthetic traits.
    Panda D; Sahu T; Barik J; Mishra SS; Padhan B; Lenka SK
    Data Brief; 2019 Aug; 25():104305. PubMed ID: 31516923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein.
    Kusumi K; Hirotsuka S; Kumamaru T; Iba K
    J Exp Bot; 2012 Sep; 63(15):5635-44. PubMed ID: 22915747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions.
    Gu J; Yin X; Stomph TJ; Wang H; Struik PC
    J Exp Bot; 2012 Sep; 63(14):5137-53. PubMed ID: 22888131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Responses of diurnal variation of flag-leaf photosynthesis and photosynthetic pigment content to elevated atmospheric CO
    Yuan MM; Zhu JG; Liu G; Wang WL
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):167-175. PubMed ID: 29692025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High photosynthesis rate in two wild rice species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate.
    Mathan J; Singh A; Jathar V; Ranjan A
    J Exp Bot; 2021 Oct; 72(20):7119-7135. PubMed ID: 34185840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsoventral photosynthetic asymmetry of tobacco leaves in response to direct and diffuse light.
    Wang X; Yan H; Wu B; Ma X; Shi Y
    J Plant Res; 2020 Jan; 133(1):35-48. PubMed ID: 31745686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drivers of Natural Variation in Water-Use Efficiency Under Fluctuating Light Are Promising Targets for Improvement in Sorghum.
    Pignon CP; Leakey ADB; Long SP; Kromdijk J
    Front Plant Sci; 2021; 12():627432. PubMed ID: 33597965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf N content regulates the speed of photosynthetic induction under fluctuating light among canola genotypes (Brassica napus L.).
    Liu J; Zhang J; Estavillo GM; Luo T; Hu L
    Physiol Plant; 2021 Aug; 172(4):1844-1852. PubMed ID: 33748976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiplexed gas exchange system for increased throughput of photosynthetic capacity measurements.
    Salter WT; Gilbert ME; Buckley TN
    Plant Methods; 2018; 14():80. PubMed ID: 30214467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis.
    Gu J; Yin X; Stomph TJ; Struik PC
    Plant Cell Environ; 2014 Jan; 37(1):22-34. PubMed ID: 23937619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rapid A-C
    Stinziano JR; Morgan PB; Lynch DJ; Saathoff AJ; McDermitt DK; Hanson DT
    Plant Cell Environ; 2017 Aug; 40(8):1256-1262. PubMed ID: 28247953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.