BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31998408)

  • 1. Metabolic engineering of
    Qiu M; Shen W; Yan X; He Q; Cai D; Chen S; Wei H; Knoshaug EP; Zhang M; Himmel ME; Yang S
    Biotechnol Biofuels; 2020; 13():15. PubMed ID: 31998408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae.
    Milne N; van Maris AJ; Pronk JT; Daran JM
    Biotechnol Biofuels; 2015; 8():204. PubMed ID: 26628917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid membrane remodeling and metabolic response during isobutanol and ethanol exposure in Zymomonas mobilis.
    Rivera Vazquez J; Trujillo E; Williams J; She F; Getahun F; Callaghan MM; Coon JJ; Amador-Noguez D
    Biotechnol Biofuels Bioprod; 2024 Jan; 17(1):14. PubMed ID: 38281959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Efficacy CRISPR Interference System for Gene Function Discovery in Zymomonas mobilis.
    Banta AB; Enright AL; Siletti C; Peters JM
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978126
    [No Abstract]   [Full Text] [Related]  

  • 5. Systematic metabolic engineering of
    Xiao Y; Tan X; He Q; Yang S
    Front Bioeng Biotechnol; 2024; 12():1392556. PubMed ID: 38827034
    [No Abstract]   [Full Text] [Related]  

  • 6. Investigation of the impact of a broad range of temperatures on the physiological and transcriptional profiles of Zymomonas mobilis ZM4 for high-temperature-tolerant recombinant strain development.
    Li R; Shen W; Yang Y; Du J; Li M; Yang S
    Biotechnol Biofuels; 2021 Jun; 14(1):146. PubMed ID: 34176507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of efficient xylose utilization strains of Zymomonas mobilis.
    Lou J; Wang J; Yang Y; Yang Q; Li R; Hu M; He Q; Du J; Wang X; Li M; Yang S
    Biotechnol Biofuels; 2021 Dec; 14(1):231. PubMed ID: 34863266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars.
    Yang S; Mohagheghi A; Franden MA; Chou YC; Chen X; Dowe N; Himmel ME; Zhang M
    Biotechnol Biofuels; 2016; 9(1):189. PubMed ID: 27594916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zymomonas mobilis: a novel platform for future biorefineries.
    He MX; Wu B; Qin H; Ruan ZY; Tan FR; Wang JL; Shui ZX; Dai LC; Zhu QL; Pan K; Tang XY; Wang WG; Hu QC
    Biotechnol Biofuels; 2014; 7():101. PubMed ID: 25024744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of an industrial bacterium
    Wang Z; Wang X; Yan X; Yi H; He S; Zhang H; Zhou X; He Q; Yang S
    Synth Syst Biotechnol; 2024 Jun; 9(2):349-358. PubMed ID: 38549615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulated redirection of central carbon flux enhances anaerobic production of bioproducts in Zymomonas mobilis.
    Liu Y; Ghosh IN; Martien J; Zhang Y; Amador-Noguez D; Landick R
    Metab Eng; 2020 Sep; 61():261-274. PubMed ID: 32590077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production.
    Meliawati M; Volke DC; Nikel PI; Schmid J
    Microb Biotechnol; 2024 Mar; 17(3):e14438. PubMed ID: 38529712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering alternative isobutanol production platforms.
    Felpeto-Santero C; Rojas A; Tortajada M; Galán B; Ramón D; García JL
    AMB Express; 2015 Dec; 5(1):119. PubMed ID: 26054735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis.
    Martien JI; Trujillo EA; Jacobson TB; Tatli M; Hebert AS; Stevenson DM; Coon JJ; Amador-Noguez D
    mSystems; 2021 Dec; 6(6):e0098721. PubMed ID: 34783580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a counterselectable system for rapid and efficient CRISPR-based genome engineering in Zymomonas mobilis.
    Zheng Y; Fu H; Chen J; Li J; Bian Y; Hu P; Lei L; Liu Y; Yang J; Peng W
    Microb Cell Fact; 2023 Oct; 22(1):208. PubMed ID: 37833755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new Zymomonas mobilis platform strain for the efficient production of chemicals.
    Frohwitter J; Behrendt G; Klamt S; Bettenbrock K
    Microb Cell Fact; 2024 May; 23(1):143. PubMed ID: 38773442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production.
    Kannuchamy S; Mukund N; Saleena LM
    BMC Biotechnol; 2016 May; 16 Suppl 1(Suppl 1):34. PubMed ID: 27213504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.
    Chen X; Xu J; Yang L; Yuan Z; Xiao S; Zhang Y; Liang C; He M; Guo Y
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1473-9. PubMed ID: 26350079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances and prospects in metabolic engineering of Zymomonas mobilis.
    Wang X; He Q; Yang Y; Wang J; Haning K; Hu Y; Wu B; He M; Zhang Y; Bao J; Contreras LM; Yang S
    Metab Eng; 2018 Nov; 50():57-73. PubMed ID: 29627506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the valine biosynthetic pathway to convert glucose into isobutanol.
    Savrasova EA; Kivero AD; Shakulov RS; Stoynova NV
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1287-94. PubMed ID: 21161324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.