BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31998469)

  • 1. Fatigue Evaluation through Machine Learning and a Global Fatigue Descriptor.
    Ramos G; Vaz JR; Mendonça GV; Pezarat-Correia P; Rodrigues J; Alfaras M; Gamboa H
    J Healthc Eng; 2020; 2020():6484129. PubMed ID: 31998469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart Rate Variability-Based Subjective Physical Fatigue Assessment.
    Ni Z; Sun F; Li Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals.
    Chen S; Xu K; Yao X; Ge J; Li L; Zhu S; Li Z
    Comput Methods Programs Biomed; 2021 Nov; 211():106451. PubMed ID: 34644668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.
    Karthick PA; Ghosh DM; Ramakrishnan S
    Comput Methods Programs Biomed; 2018 Feb; 154():45-56. PubMed ID: 29249346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalisable machine learning models trained on heart rate variability data to predict mental fatigue.
    Matuz A; van der Linden D; Darnai G; Csathó Á
    Sci Rep; 2022 Nov; 12(1):20023. PubMed ID: 36414673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol.
    Byun S; Kim AY; Jang EH; Kim S; Choi KW; Yu HY; Jeon HJ
    Comput Biol Med; 2019 Sep; 112():103381. PubMed ID: 31404718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas.
    Chen S; Xu K; Yao X; Zhu S; Zhang B; Zhou H; Guo X; Zhao B
    Comput Biol Med; 2021 Jun; 133():104413. PubMed ID: 33915363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AI-Assisted Fatigue and Stamina Control for Performance Sports on IMU-Generated Multivariate Times Series Datasets.
    Biró A; Cuesta-Vargas AI; Szilágyi L
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-signals Collecting System for Fatigue Level Classification
    Lee Y; Lee Y; Kim D
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of Fatigue Phases in Healthy and Diabetic Adults Using Wearable Sensor.
    Aljihmani L; Kerdjidj O; Zhu Y; Mehta RK; Erraguntla M; Sasangohar F; Qaraqe K
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-dimensional matrix image based feature extraction method for classification of sEMG: A comparative analysis based on SVM, KNN and RBF-NN.
    Wen T; Zhang Z; Qiu M; Zeng M; Luo W
    J Xray Sci Technol; 2017; 25(2):287-300. PubMed ID: 28269818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection.
    Zeng H; Zhang J; Zakaria W; Babiloni F; Gianluca B; Li X; Kong W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of warning system of ventricular tachyarrhythmia in patients with heart failure with heart rate variability data.
    Au-Yeung WM; Reinhall PG; Bardy GH; Brunton SL
    PLoS One; 2018; 13(11):e0207215. PubMed ID: 30427880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal.
    Asl BM; Setarehdan SK; Mohebbi M
    Artif Intell Med; 2008 Sep; 44(1):51-64. PubMed ID: 18585905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Based Diabetic Neuropathy and Previous Foot Ulceration Patients Detection Using Electromyography and Ground Reaction Forces during Gait.
    Haque F; Reaz MBI; Chowdhury MEH; Ezeddin M; Kiranyaz S; Alhatou M; Ali SHM; Bakar AAA; Srivastava G
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals.
    Purushothaman G; Vikas R
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):549-559. PubMed ID: 29744809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on exercise fatigue estimation method of Pilates rehabilitation based on ECG and sEMG feature fusion.
    Li D; Chen C
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):67. PubMed ID: 35303877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Feature fusion of electrocardiogram and surface electromyography for estimating the fatigue states during lower limb rehabilitation].
    Yuan Y; Cao D; Li C; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Dec; 37(6):1056-1064. PubMed ID: 33369345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.