BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31998554)

  • 1. TRANSPARENT TESTA GLABRA 1 participates in flowering time regulation in
    Paffendorf BAM; Qassrawi R; Meys AM; Trimborn L; Schrader A
    PeerJ; 2020; 8():e8303. PubMed ID: 31998554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock.
    Wang Y; Wu JF; Nakamichi N; Sakakibara H; Nam HG; Wu SH
    Plant Cell; 2011 Feb; 23(2):486-98. PubMed ID: 21357491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TTG1 proteins regulate circadian activity as well as epidermal cell fate and pigmentation.
    Airoldi CA; Hearn TJ; Brockington SF; Webb AAR; Glover BJ
    Nat Plants; 2019 Nov; 5(11):1145-1153. PubMed ID: 31712761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways.
    Salathia N; Davis SJ; Lynn JR; Michaels SD; Amasino RM; Millar AJ
    BMC Plant Biol; 2006 May; 6():10. PubMed ID: 16737527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway.
    Nakamichi N; Kita M; Niinuma K; Ito S; Yamashino T; Mizoguchi T; Mizuno T
    Plant Cell Physiol; 2007 Jun; 48(6):822-32. PubMed ID: 17504813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-binding protein phosphatase AtDBP1 acts as a promoter of flowering in Arabidopsis.
    Zhai H; Ning W; Wu H; Zhang X; Lü S; Xia Z
    Planta; 2016 Mar; 243(3):623-33. PubMed ID: 26586176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis.
    Choi K; Kim S; Kim SY; Kim M; Hyun Y; Lee H; Choe S; Kim SG; Michaels S; Lee I
    Plant Cell; 2005 Oct; 17(10):2647-60. PubMed ID: 16155178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs.
    Nakamichi N; Takao S; Kudo T; Kiba T; Wang Y; Kinoshita T; Sakakibara H
    Plant Cell Physiol; 2016 May; 57(5):1085-97. PubMed ID: 27012548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression.
    Oda A; Fujiwara S; Kamada H; Coupland G; Mizoguchi T
    FEBS Lett; 2004 Jan; 557(1-3):259-64. PubMed ID: 14741378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana.
    Ito S; Niwa Y; Nakamichi N; Kawamura H; Yamashino T; Mizuno T
    Plant Cell Physiol; 2008 Feb; 49(2):201-13. PubMed ID: 18178585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of flowering signals in winter-annual Arabidopsis.
    Michaels SD; Himelblau E; Kim SY; Schomburg FM; Amasino RM
    Plant Physiol; 2005 Jan; 137(1):149-56. PubMed ID: 15618421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization.
    Michaels SD; Amasino RM
    Plant Cell; 2001 Apr; 13(4):935-41. PubMed ID: 11283346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression.
    Nakano Y; Kawashima H; Kinoshita T; Yoshikawa H; Hisamatsu T
    Physiol Plant; 2011 Apr; 141(4):383-93. PubMed ID: 21241311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana.
    Nakamichi N; Kita M; Ito S; Yamashino T; Mizuno T
    Plant Cell Physiol; 2005 May; 46(5):686-98. PubMed ID: 15767265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Identification of Direct Targets of the TTG1-bHLH-MYB Complex in Regulating Trichome Formation and Flavonoid Accumulation in
    Wei Z; Cheng Y; Zhou C; Li D; Gao X; Zhang S; Chen M
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C.
    Eom H; Park SJ; Kim MK; Kim H; Kang H; Lee I
    Plant J; 2018 Jan; 93(1):79-91. PubMed ID: 29086456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C.
    Zhang H; van Nocker S
    Plant J; 2002 Sep; 31(5):663-73. PubMed ID: 12207655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae).
    Slotte T; Holm K; McIntyre LM; Lagercrantz U; Lascoux M
    Plant Physiol; 2007 Sep; 145(1):160-73. PubMed ID: 17631524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A repressor complex governs the integration of flowering signals in Arabidopsis.
    Li D; Liu C; Shen L; Wu Y; Chen H; Robertson M; Helliwell CA; Ito T; Meyerowitz E; Yu H
    Dev Cell; 2008 Jul; 15(1):110-20. PubMed ID: 18606145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.