These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31998683)

  • 1. Techno-Economic Analysis of Glycerol Valorization via Catalytic Applications of Sulphonic Acid-Functionalized Copolymer Beads.
    Al-Saadi LS; Eze VC; Harvey AP
    Front Chem; 2019; 7():882. PubMed ID: 31998683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green synthesis of solketal from glycerol using metal-modified ZSM-5 zeolite catalysts: process optimization.
    Gujar JP; Modhera B
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28353-28367. PubMed ID: 38538995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heteropolyacid supported on ionic liquid decorated hierarchical faujasite zeolite as an efficient catalyst for glycerol acetalization to solketal.
    Sadjadi S; Tarighi S; Delangiz M; Heravi M
    Sci Rep; 2023 Sep; 13(1):15703. PubMed ID: 37735246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Easy and Fast Production of Solketal from Glycerol Acetalization via Heteropolyacids.
    Julião D; Mirante F; Balula SS
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heteropolyacids@Silica Heterogeneous Catalysts to Produce Solketal from Glycerol Acetalization.
    Dias CN; Santos-Vieira ICMS; Gomes CR; Mirante F; Balula SS
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MOF-808 as an Efficient Catalyst for Valorization of Biodiesel Waste Production: Glycerol Acetalization.
    Mirante F; Leo P; Dias CN; Cunha-Silva L; Balula SS
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of the Heterogeneous Catalyst to Produce Solketal from Biodiesel Waste: The Key to Achieve Efficiency.
    Dias CN; Viana AM; Cunha-Silva L; Balula SS
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric and kinetic study of solvent-free synthesis of solketal using ion exchange resin.
    Rambhia DA; Veluturla S; Narula A
    Turk J Chem; 2022; 46(3):881-889. PubMed ID: 37720614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of the WO
    Huang Y; Zhang G; Zhang Q
    ACS Omega; 2021 Feb; 6(5):3875-3883. PubMed ID: 33585766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-Economic Assessment and Sensitivity Analysis of Glycerol Valorization to Biofuel Additives via Esterification.
    Pandit K; Jeffrey C; Keogh J; Tiwari MS; Artioli N; Manyar HG
    Ind Eng Chem Res; 2023 Jun; 62(23):9201-9210. PubMed ID: 37333489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.
    Dodson JR; Leite Td; Pontes NS; Peres Pinto B; Mota CJ
    ChemSusChem; 2014 Sep; 7(9):2728-34. PubMed ID: 25045049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a Rational Design of a Continuous-Flow Method for the Acetalization of Crude Glycerol: Scope and Limitations of Commercial Amberlyst 36 and AlF₃·3H₂O as Model Catalysts.
    Guidi S; Noè M; Riello P; Perosa A; Selva M
    Molecules; 2016 May; 21(5):. PubMed ID: 27213304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on the Catalytic Acetalization of Bio-renewable Glycerol to Fuel Additives.
    Talebian-Kiakalaieh A; Amin NAS; Najaafi N; Tarighi S
    Front Chem; 2018; 6():573. PubMed ID: 30534550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Engine Performance between Nano- and Microemulsions of Solketal Droplets Dispersed in Diesel Assisted by Microwave Irradiation.
    Lin CY; Tsai SM
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31561537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solketal Removal from Aqueous Solutions Using Activated Carbon and a Metal-Organic Framework as Adsorbents.
    Santamaría L; Korili SA; Gil A
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear-driven production of renewable fuel additives from waste organics.
    Plant AG; Kos B; Jazbec A; Snoj L; Najdanovic-Visak V; Joyce MJ
    Commun Chem; 2021 Sep; 4(1):132. PubMed ID: 36697630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane.
    Kaur J; Sarma AK; Gera P; Jha MK
    Sci Rep; 2021 Apr; 11(1):8567. PubMed ID: 33883575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel route for synthesis of cross-linked polystyrene copolymer beads with tunable porosity using guar and xanthan gums from bioresources as alternative synthetic suspension stabilizers.
    Rahmatpour A; Goodarzi N; Moazzez M
    Des Monomers Polym; 2018; 21(1):116-129. PubMed ID: 29988816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Flow Synthesis of a ZSM-5 Film in Capillary Microchannel for Efficient Production of Solketal.
    Huang X; Zhang G; Zhang L; Zhang Q
    ACS Omega; 2020 Aug; 5(33):20784-20791. PubMed ID: 32875212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Sustainable Production of Fatty Acid Methyl Ester from Palm Oil Using Bio-Based Heterogeneous Catalyst: Process Simulation and Techno-Economic Analysis.
    Saetiao P; Kongrit N; Jitjamnong J; Direksilp C; Cheng CK; Khantikulanon N
    ACS Omega; 2023 Aug; 8(33):30598-30611. PubMed ID: 37636941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.