These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31999083)

  • 21. Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation.
    Yi Z; Luo Z; Qin X; Chen Q; Liu X
    Acc Chem Res; 2020 Nov; 53(11):2692-2704. PubMed ID: 33103883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications.
    Ai X; Hu M; Wang Z; Zhang W; Li J; Yang H; Lin J; Xing B
    Bioconjug Chem; 2018 Apr; 29(4):838-851. PubMed ID: 29509403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticles Based on Plasma Proteins for Drug Delivery Applications.
    Tezcaner A; Baran ET; Keskin D
    Curr Pharm Des; 2016; 22(22):3445-54. PubMed ID: 26861647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.
    Han L; Zhang XY; Wang YL; Li X; Yang XH; Huang M; Hu K; Li LH; Wei Y
    J Control Release; 2017 Aug; 259():40-52. PubMed ID: 28288893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing of UCNPs@Bi@SiO
    Zhao S; Tian R; Shao B; Feng Y; Yuan S; Dong L; Zhang L; Liu K; Wang Z; You H
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):394-402. PubMed ID: 30543291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of target-tunable P22 VLP-based delivery nanoplatforms using bacterial superglue.
    Kim H; Choi H; Bae Y; Kang S
    Biotechnol Bioeng; 2019 Nov; 116(11):2843-2851. PubMed ID: 31329283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic gold and luminescent silicon nanoplatforms for multimode imaging of cancer cells.
    Erogbogbo F; Liu X; May JL; Narain A; Gladding P; Swihart MT; Prasad PN
    Integr Biol (Camb); 2013 Jan; 5(1):144-50. PubMed ID: 23014624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smart Cancer Cell Targeting Imaging and Drug Delivery System by Systematically Engineering Periodic Mesoporous Organosilica Nanoparticles.
    Lu N; Tian Y; Tian W; Huang P; Liu Y; Tang Y; Wang C; Wang S; Su Y; Zhang Y; Pan J; Teng Z; Lu G
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2985-93. PubMed ID: 26767305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics.
    Poudel K; Gautam M; Jin SG; Choi HG; Yong CS; Kim JO
    Int J Pharm; 2019 May; 562():135-150. PubMed ID: 30904728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monodisperse Au-Fe
    Ju Y; Zhang H; Yu J; Tong S; Tian N; Wang Z; Wang X; Su X; Chu X; Lin J; Ding Y; Li G; Sheng F; Hou Y
    ACS Nano; 2017 Sep; 11(9):9239-9248. PubMed ID: 28850218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy.
    Hu Y; Mignani S; Majoral JP; Shen M; Shi X
    Chem Soc Rev; 2018 Mar; 47(5):1874-1900. PubMed ID: 29376542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging methods in therapeutics using multifunctional nanoparticles.
    Habibi N; Quevedo DF; Gregory JV; Lahann J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1625. PubMed ID: 32196991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics.
    Chen L; Zhang J; Zhou X; Yang S; Zhang Q; Wang W; You Z; Peng C; He C
    Acta Biomater; 2019 Mar; 86():406-415. PubMed ID: 30625415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanotechnology platforms for cancer immunotherapy.
    Yang Z; Ma Y; Zhao H; Yuan Y; Kim BYS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Mar; 12(2):e1590. PubMed ID: 31696664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimuli-activatable nanomedicines for chemodynamic therapy of cancer.
    Wang W; Jin Y; Xu Z; Liu X; Bajwa SZ; Khan WS; Yu H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1614. PubMed ID: 32011108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances of smart acid-responsive gold nanoparticles in tumor therapy.
    Zhang Y; Yang L; Yang C; Liu J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1619. PubMed ID: 32043312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging.
    Zhang Z; Wang J; Chen C
    Adv Mater; 2013 Jul; 25(28):3869-80. PubMed ID: 24048973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in the Use of Multifunctional Mesoporous Silica Nanoparticles and Related Nanomaterials as Carriers for the Cancer Treatment.
    Song C; Wang X; Wang Y; Yu H; Cui Y; Ma T
    Curr Drug Metab; 2018; 19(2):131-141. PubMed ID: 28758578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green Synthesized Nanomaterials as Theranostic Platforms for Cancer Treatment: Principles, Challenges and the Road Ahead.
    Rajasekharreddy P; Huang C; Busi S; Rajkumari J; Tai MH; Liu G
    Curr Med Chem; 2019; 26(8):1311-1327. PubMed ID: 28294042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.