BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 31999100)

  • 1. Electron Transfer in Nitrogenase.
    Rutledge HL; Tezcan FA
    Chem Rev; 2020 Jun; 120(12):5158-5193. PubMed ID: 31999100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Transduction in Nitrogenase.
    Seefeldt LC; Hoffman BM; Peters JW; Raugei S; Beratan DN; Antony E; Dean DR
    Acc Chem Res; 2018 Sep; 51(9):2179-2186. PubMed ID: 30095253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogenase Bioelectrochemistry for Synthesis Applications.
    Milton RD; Minteer SD
    Acc Chem Res; 2019 Dec; 52(12):3351-3360. PubMed ID: 31800207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evidence for asymmetrical nucleotide interactions in nitrogenase.
    Tezcan FA; Kaiser JT; Howard JB; Rees DC
    J Am Chem Soc; 2015 Jan; 137(1):146-9. PubMed ID: 25522159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of electron transfer in nitrogenase.
    Seefeldt LC; Peters JW; Beratan DN; Bothner B; Minteer SD; Raugei S; Hoffman BM
    Curr Opin Chem Biol; 2018 Dec; 47():54-59. PubMed ID: 30205289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.
    Yang ZY; Ledbetter R; Shaw S; Pence N; Tokmina-Lukaszewska M; Eilers B; Guo Q; Pokhrel N; Cash VL; Dean DR; Antony E; Bothner B; Peters JW; Seefeldt LC
    Biochemistry; 2016 Jul; 55(26):3625-35. PubMed ID: 27295169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event.
    Yang ZY; Badalyan A; Hoffman BM; Dean DR; Seefeldt LC
    J Am Chem Soc; 2023 Mar; 145(10):5637-5644. PubMed ID: 36857604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.
    Lanzilotta WN; Parker VD; Seefeldt LC
    Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP- and iron-protein-independent activation of nitrogenase catalysis by light.
    Roth LE; Nguyen JC; Tezcan FA
    J Am Chem Soc; 2010 Oct; 132(39):13672-4. PubMed ID: 20843032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A voltammetric study of nitrogenase MoFe-protein using low-potential electron transfer mediators.
    Badalyan A; Yang ZY; Seefeldt LC
    Bioelectrochemistry; 2024 Feb; 155():108575. PubMed ID: 37738860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle.
    Hageman RV; Burris RH
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2699-702. PubMed ID: 275837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogenase complexes: multiple docking sites for a nucleotide switch protein.
    Tezcan FA; Kaiser JT; Mustafi D; Walton MY; Howard JB; Rees DC
    Science; 2005 Aug; 309(5739):1377-80. PubMed ID: 16123301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced efficiency of ATP hydrolysis during nitrogenase catalysis utilizing reductants that form the all-ferrous redox state of the Fe protein.
    Erickson JA; Nyborg AC; Johnson JL; Truscott SM; Gunn A; Nordmeyer FR; Watt GD
    Biochemistry; 1999 Oct; 38(43):14279-85. PubMed ID: 10572002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling nitrogenase: catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP.
    Danyal K; Inglet BS; Vincent KA; Barney BM; Hoffman BM; Armstrong FA; Dean DR; Seefeldt LC
    J Am Chem Soc; 2010 Sep; 132(38):13197-9. PubMed ID: 20812745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative cooperativity in the nitrogenase Fe protein electron delivery cycle.
    Danyal K; Shaw S; Page TR; Duval S; Horitani M; Marts AR; Lukoyanov D; Dean DR; Raugei S; Hoffman BM; Seefeldt LC; Antony E
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5783-E5791. PubMed ID: 27698129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39.
    Lanzilotta WN; Fisher K; Seefeldt LC
    J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic CO
    Hu B; Harris DF; Dean DR; Liu TL; Yang ZY; Seefeldt LC
    Bioelectrochemistry; 2018 Apr; 120():104-109. PubMed ID: 29223886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.