BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31999239)

  • 1. Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium
    Mandal S; Rameez MJ; Chatterjee S; Sarkar J; Pyne P; Bhattacharya S; Shaw R; Ghosh W
    Microbiology (Reading); 2020 Apr; 166(4):386-397. PubMed ID: 31999239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel soxO gene, encoding a glutathione disulfide reductase, is essential for tetrathionate oxidation in Advenella kashmirensis.
    Pyne P; Alam M; Ghosh W
    Microbiol Res; 2017 Dec; 205():1-7. PubMed ID: 28942835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation.
    Pyne P; Alam M; Rameez MJ; Mandal S; Sar A; Mondal N; Debnath U; Mathew B; Misra AK; Mandal AK; Ghosh W
    Mol Microbiol; 2018 Jul; 109(2):169-191. PubMed ID: 29669166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The S4-intermediate pathway for the oxidation of thiosulfate by the chemolithoautotroph Tetrathiobacter kashmirensis and inhibition of tetrathionate oxidation by sulfite.
    Dam B; Mandal S; Ghosh W; Das Gupta SK; Roy P
    Res Microbiol; 2007 May; 158(4):330-8. PubMed ID: 17509837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ; Oh JK; Suzuki I
    Can J Microbiol; 2001 Apr; 47(4):348-58. PubMed ID: 11358175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EFFECT OF THIOL-BINDING REAGENTS ON THE METABOLISM OF THIOSULFATE AND TETRATHIONATE BY THIOBACILLUS NEAPOLITANUS.
    TRUDINGER PA
    J Bacteriol; 1965 Mar; 89(3):617-25. PubMed ID: 14273636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle.
    Boden R; Kelly DP; Murrell JC; Schäfer H
    Environ Microbiol; 2010 Oct; 12(10):2688-99. PubMed ID: 20482741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiosulfate Oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense.
    Anandham R; Indiragandhi P; Madhaiyan M; Chung J; Ryu KY; Jee HJ; Sa T
    J Microbiol Biotechnol; 2009 Jan; 19(1):17-22. PubMed ID: 19190404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic enrichment of 34S during proteobacterial thiosulfate oxidation and the conserved role of SoxB in S-S bond breaking.
    Alam M; Pyne P; Mazumdar A; Peketi A; Ghosh W
    Appl Environ Microbiol; 2013 Jul; 79(14):4455-64. PubMed ID: 23686269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of genes for sulfur oxidation in the intracellular chemoautotrophic symbiont of the deep-sea bivalve Calyptogena okutanii.
    Harada M; Yoshida T; Kuwahara H; Shimamura S; Takaki Y; Kato C; Miwa T; Miyake H; Maruyama T
    Extremophiles; 2009 Nov; 13(6):895-903. PubMed ID: 19730970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001.
    Lahiri C; Mandal S; Ghosh W; Dam B; Roy P
    Curr Microbiol; 2006 Apr; 52(4):267-73. PubMed ID: 16528465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum.
    Hensen D; Sperling D; Trüper HG; Brune DC; Dahl C
    Mol Microbiol; 2006 Nov; 62(3):794-810. PubMed ID: 16995898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A metabolic puzzle: Consumption of C
    Li J; Koch J; Flegler W; Garcia Ruiz L; Hager N; Ballas A; Tanabe TS; Dahl C
    Biochim Biophys Acta Bioenerg; 2023 Jan; 1864(1):148932. PubMed ID: 36367491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea.
    Zhang J; Liu R; Xi S; Cai R; Zhang X; Sun C
    ISME J; 2020 Sep; 14(9):2261-2274. PubMed ID: 32457501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum: structural and functional insights into thiosulfate oxidation.
    Brito JA; Denkmann K; Pereira IA; Archer M; Dahl C
    J Biol Chem; 2015 Apr; 290(14):9222-38. PubMed ID: 25673691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans.
    Hazeu W; Bijleveld W; Grotenhuis JT; Kakes E; Kuenen JG
    Antonie Van Leeuwenhoek; 1986; 52(6):507-18. PubMed ID: 3813523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil.
    Trudinger PA
    J Bacteriol; 1967 Feb; 93(2):550-9. PubMed ID: 6020561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry.
    Houghton JL; Foustoukos DI; Flynn TM; Vetriani C; Bradley AS; Fike DA
    Environ Microbiol; 2016 Sep; 18(9):3057-72. PubMed ID: 26914243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.