BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31999322)

  • 1. MODER2: first-order Markov modeling and discovery of monomeric and dimeric binding motifs.
    Toivonen J; Das PK; Taipale J; Ukkonen E
    Bioinformatics; 2020 May; 36(9):2690-2696. PubMed ID: 31999322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets.
    Toivonen J; Kivioja T; Jolma A; Yin Y; Taipale J; Ukkonen E
    Nucleic Acids Res; 2018 May; 46(8):e44. PubMed ID: 29385521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BEESEM: estimation of binding energy models using HT-SELEX data.
    Ruan S; Swamidass SJ; Stormo GD
    Bioinformatics; 2017 Aug; 33(15):2288-2295. PubMed ID: 28379348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences.
    Siebert M; Söding J
    Nucleic Acids Res; 2016 Jul; 44(13):6055-69. PubMed ID: 27288444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BML: a versatile web server for bipartite motif discovery.
    Vahed M; Vahed M; Garmire LX
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34974623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian Markov models improve the prediction of binding motifs beyond first order.
    Ge W; Meier M; Roth C; Söding J
    NAR Genom Bioinform; 2021 Jun; 3(2):lqab026. PubMed ID: 33928244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.
    Ma W; Yang L; Rohs R; Noble WS
    Bioinformatics; 2017 Oct; 33(19):3003-3010. PubMed ID: 28541376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of methods for modeling transcription factor sequence specificity.
    Weirauch MT; Cote A; Norel R; Annala M; Zhao Y; Riley TR; Saez-Rodriguez J; Cokelaer T; Vedenko A; Talukder S; ; Bussemaker HJ; Morris QD; Bulyk ML; Stolovitzky G; Hughes TR
    Nat Biotechnol; 2013 Feb; 31(2):126-34. PubMed ID: 23354101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. abc4pwm: affinity based clustering for position weight matrices in applications of DNA sequence analysis.
    Ali O; Farooq A; Yang M; Jin VX; Bjørås M; Wang J
    BMC Bioinformatics; 2022 Mar; 23(1):83. PubMed ID: 35240993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.
    Lu R; Mucaki EJ; Rogan PK
    Nucleic Acids Res; 2017 Mar; 45(5):e27. PubMed ID: 27899659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting transcription factor binding using ensemble random forest models.
    Behjati Ardakani F; Schmidt F; Schulz MH
    F1000Res; 2018; 7():1603. PubMed ID: 31723409
    [No Abstract]   [Full Text] [Related]  

  • 17. Set cover-based methods for motif selection.
    Li Y; Liu Y; Juedes D; Drews F; Bunescu R; Welch L
    Bioinformatics; 2020 Feb; 36(4):1044-1051. PubMed ID: 31665223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.
    Müller-Molina AJ; Schöler HR; Araúzo-Bravo MJ
    PLoS One; 2012; 7(11):e49086. PubMed ID: 23209563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HAMPLE: deciphering TF-DNA binding mechanism in different cellular environments by characterizing higher-order nucleotide dependency.
    Wang Z; Xiong S; Yu Y; Zhou J; Zhang Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37140548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding de novo methylated DNA motifs.
    Ngo V; Wang M; Wang W
    Bioinformatics; 2019 Sep; 35(18):3287-3293. PubMed ID: 30726880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.