BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31999430)

  • 1. Probing Mobile Charge Carriers in Semiconducting Carbon Nanotube Networks by Charge Modulation Spectroscopy.
    Zorn NF; Scuratti F; Berger FJ; Perinot A; Heimfarth D; Caironi M; Zaumseil J
    ACS Nano; 2020 Feb; 14(2):2412-2423. PubMed ID: 31999430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes.
    Rother M; Schießl SP; Zakharko Y; Gannott F; Zaumseil J
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5571-9. PubMed ID: 26867006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Carrier Dynamics in
    Zheng W; Zorn NF; Bonn M; Zaumseil J; Wang HI
    ACS Nano; 2022 Jun; 16(6):9401-9409. PubMed ID: 35709437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge Transport in and Electroluminescence from sp
    Zorn NF; Berger FJ; Zaumseil J
    ACS Nano; 2021 Jun; 15(6):10451-10463. PubMed ID: 34048654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks.
    Wieland S; El Yumin AA; Gotthardt JM; Zaumseil J
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):3112-3122. PubMed ID: 36824583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge and Thermoelectric Transport in Polymer-Sorted Semiconducting Single-Walled Carbon Nanotube Networks.
    Statz M; Schneider S; Berger FJ; Lai L; Wood WA; Abdi-Jalebi M; Leingang S; Himmel HJ; Zaumseil J; Sirringhaus H
    ACS Nano; 2020 Nov; 14(11):15552-15565. PubMed ID: 33166124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guiding Charge Transport in Semiconducting Carbon Nanotube Networks by Local Optical Switching.
    Brohmann M; Wieland S; Angstenberger S; Herrmann NJ; Lüttgens J; Fazzi D; Zaumseil J
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28392-28403. PubMed ID: 32476400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge Transport in Mixed Semiconducting Carbon Nanotube Networks with Tailored Mixing Ratios.
    Brohmann M; Berger FJ; Matthiesen M; Schießl SP; Schneider S; Zaumseil J
    ACS Nano; 2019 Jun; 13(6):7323-7332. PubMed ID: 31184852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer.
    Kuang Z; Berger FJ; Lustres JLP; Wollscheid N; Li H; Lüttgens J; Leinen MB; Flavel BS; Zaumseil J; Buckup T
    J Phys Chem C Nanomater Interfaces; 2021 Apr; 125(15):8125-8136. PubMed ID: 34055124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nanotube coupling on exciton transport in polymer-free monochiral semiconducting carbon nanotube networks.
    Arias DH; Sulas-Kern DB; Hart SM; Kang HS; Hao J; Ihly R; Johnson JC; Blackburn JL; Ferguson AJ
    Nanoscale; 2019 Nov; 11(44):21196-21206. PubMed ID: 31663591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors.
    Ding J; Li Z; Lefebvre J; Cheng F; Dubey G; Zou S; Finnie P; Hrdina A; Scoles L; Lopinski GP; Kingston CT; Simard B; Malenfant PR
    Nanoscale; 2014 Feb; 6(4):2328-39. PubMed ID: 24418869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inkjet-Printing-Based Density Profile Engineering of Single-Walled Carbon Nanotube Networks for Conformable High-On/Off-Performance Thin-Film Transistors.
    Oh H; Kim H; Yoo H; Park B; Chung S; Lee B; Hong Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43163-43173. PubMed ID: 34486372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks.
    Jakubka F; Backes C; Gannott F; Mundloch U; Hauke F; Hirsch A; Zaumseil J
    ACS Nano; 2013 Aug; 7(8):7428-35. PubMed ID: 23915032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformally Gated Surface Conducting Behaviors of Single-Walled Carbon Nanotube Thin-Film-Transistors.
    Kim KT; Lee KW; Moon S; Park JB; Park CY; Nam SJ; Kim J; Lee MJ; Heo JS; Park SK
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trion electroluminescence from semiconducting carbon nanotubes.
    Jakubka F; Grimm SB; Zakharko Y; Gannott F; Zaumseil J
    ACS Nano; 2014 Aug; 8(8):8477-86. PubMed ID: 25029479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition.
    Kim UJ; Lee EH; Kim JM; Min YS; Kim E; Park W
    Nanotechnology; 2009 Jul; 20(29):295201. PubMed ID: 19567966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
    Itkis ME; Pekker A; Tian X; Bekyarova E; Haddon RC
    Acc Chem Res; 2015 Aug; 48(8):2270-9. PubMed ID: 26244611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.