These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31999576)

  • 1. Active fluidic chip produced using 3D-printing for combinatorial therapeutic screening on liver tumor spheroid.
    Feng Y; Wang B; Tian Y; Chen H; Liu Y; Fan H; Wang K; Zhang C
    Biosens Bioelectron; 2020 Mar; 151():111966. PubMed ID: 31999576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.
    Tsuda S; Jaffery H; Doran D; Hezwani M; Robbins PJ; Yoshida M; Cronin L
    PLoS One; 2015; 10(11):e0141640. PubMed ID: 26558389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printed Multimaterial Microfluidic Valve.
    Keating SJ; Gariboldi MI; Patrick WG; Sharma S; Kong DS; Oxman N
    PLoS One; 2016; 11(8):e0160624. PubMed ID: 27525809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The recent development and applications of fluidic channels by 3D printing.
    Zhou Y
    J Biomed Sci; 2017 Oct; 24(1):80. PubMed ID: 29047370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review.
    Balakrishnan HK; Doeven EH; Merenda A; Dumée LF; Guijt RM
    Anal Chim Acta; 2021 Nov; 1185():338796. PubMed ID: 34711329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Printing of Fully Integrated Microfluidic Devices for Biosensing.
    Du Y; Reitemeier J; Jiang Q; Bappy MO; Bohn PW; Zhang Y
    Small; 2024 Feb; 20(5):e2304966. PubMed ID: 37752777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer.
    Mehta V; Vilikkathala Sudhakaran S; Nellore V; Madduri S; Rath SN
    J Nanobiotechnology; 2024 Jun; 22(1):344. PubMed ID: 38890730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully 3D printed fluidic devices with integrated valves and pumps for flow injection analysis.
    Castiaux AD; Selemani MA; Ward MA; Martin RS
    Anal Methods; 2021 Nov; 13(42):5017-5024. PubMed ID: 34643627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow.
    Woo SO; Oh M; Choi Y
    STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finger-powered fluidic actuation and mixing via MultiJet 3D printing.
    Sweet E; Mehta R; Xu Y; Jew R; Lin R; Lin L
    Lab Chip; 2020 Sep; 20(18):3375-3385. PubMed ID: 32766613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing: The Second Dawn of Lab-On-Valve Fluidic Platforms for Automatic (Bio)Chemical Assays.
    Cocovi-Solberg DJ; Rosende M; Michalec M; Miró M
    Anal Chem; 2019 Jan; 91(1):1140-1149. PubMed ID: 30501183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
    Brooks JC; Ford KI; Holder DH; Holtan MD; Easley CJ
    Analyst; 2016 Oct; 141(20):5714-5721. PubMed ID: 27486597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.