These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 31999959)
1. N-doped Cu-MOFs for efficient electrochemical determination of dopamine and sulfanilamide. Chen S; Wang C; Zhang M; Zhang W; Qi J; Sun X; Wang L; Li J J Hazard Mater; 2020 May; 390():122157. PubMed ID: 31999959 [TBL] [Abstract][Full Text] [Related]
2. A Multifunctional N-Doped Cu-MOFs (N-Cu-MOF) Nanomaterial-Driven Electrochemical Aptasensor for Sensitive Detection of Deoxynivalenol. Wen X; Huang Q; Nie D; Zhao X; Cao H; Wu W; Han Z Molecules; 2021 Apr; 26(8):. PubMed ID: 33924544 [TBL] [Abstract][Full Text] [Related]
3. Surfactant-free solvothermal synthesis of Cu-MOF via protonation-deprotonation approach: A morphological dependent electrocatalytic activity for therapeutic drugs. Arul P; Huang ST; Gowthaman NSK; Govindasamy M; Jeromiyas N Mikrochim Acta; 2020 Nov; 187(12):650. PubMed ID: 33165679 [TBL] [Abstract][Full Text] [Related]
4. Dicyandiamide-assisted HKUST-1 derived Cu/N-doped porous carbon nanoarchitecture for electrochemical detection of acetaminophen. Chen S; Zhang M; Zhang H; Yan X; Xie J; Qi J; Sun X; Li J Environ Res; 2021 Oct; 201():111500. PubMed ID: 34147465 [TBL] [Abstract][Full Text] [Related]
5. MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H Li C; Wu R; Zou J; Zhang T; Zhang S; Zhang Z; Hu X; Yan Y; Ling X Biosens Bioelectron; 2018 Sep; 116():81-88. PubMed ID: 29860090 [TBL] [Abstract][Full Text] [Related]
6. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. Ko M; Mendecki L; Eagleton AM; Durbin CG; Stolz RM; Meng Z; Mirica KA J Am Chem Soc; 2020 Jul; 142(27):11717-11733. PubMed ID: 32155057 [TBL] [Abstract][Full Text] [Related]
7. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform. Shahrokhian S; Khaki Sanati E; Hosseini H Biosens Bioelectron; 2018 Jul; 112():100-107. PubMed ID: 29702380 [TBL] [Abstract][Full Text] [Related]
8. Stretchable Electrochemical Biosensing Platform Based on Ni-MOF Composite/Au Nanoparticle-Coated Carbon Nanotubes for Real-Time Monitoring of Dopamine Released from Living Cells. Shu Y; Lu Q; Yuan F; Tao Q; Jin D; Yao H; Xu Q; Hu X ACS Appl Mater Interfaces; 2020 Nov; 12(44):49480-49488. PubMed ID: 33100007 [TBL] [Abstract][Full Text] [Related]
9. Pd Nanoparticles Loaded on Cu Nanoplate Sensor for Ultrasensitive Detection of Dopamine. Tan H; Zhang X; Xie J; Tang Z; Tang S; Xu L; Yang P Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275613 [TBL] [Abstract][Full Text] [Related]
10. Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A. Hu P; Zhu X; Luo X; Hu X; Ji L Mikrochim Acta; 2020 Jan; 187(2):145. PubMed ID: 31970521 [TBL] [Abstract][Full Text] [Related]
11. Graphite paste electrodes modified with a sulfo-functionalized metal-organic framework (type MIL-101) for voltammetric sensing of dopamine. Gao LL; Sun WJ; Yin XM; Bu R; Gao EQ Mikrochim Acta; 2019 Nov; 186(12):762. PubMed ID: 31712906 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of a novel sensor based on Cu quantum dot and SH-SiO Fallah F; Shishehbore MR; Sheibani A Talanta; 2023 Jan; 252():123776. PubMed ID: 35987127 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical determination of chloramphenicol and metronidazole by using a glassy carbon electrode modified with iron, nitrogen co-doped nanoporous carbon derived from a metal-organic framework (type Fe/ZIF-8). Baikeli Y; Mamat X; He F; Xin X; Li Y; Aisa HA; Hu G Ecotoxicol Environ Saf; 2020 Nov; 204():111066. PubMed ID: 32781344 [TBL] [Abstract][Full Text] [Related]
14. A molecularly imprinted electrochemical sensor with tunable electrosynthesized Cu-MOFs modification for ultrasensitive detection of human IgG. Liang A; Tang S; Liu M; Yi Y; Xie B; Hou H; Luo A Bioelectrochemistry; 2022 Aug; 146():108154. PubMed ID: 35550252 [TBL] [Abstract][Full Text] [Related]
15. Microplasma-induced in situ rapid synthesis of CoSe nanosphere@N-doped polymeric carbon dots derived from ZIF-67 for highly sensitive dopamine detection. Zhang L; Guo J; Yuan M; Xu Y; Pu Z; Tan C; Wang Q; Xiong X Anal Chim Acta; 2024 Nov; 1329():343236. PubMed ID: 39396300 [TBL] [Abstract][Full Text] [Related]
16. Amine-functionalized Cu-MOF nanospheres towards label-free hepatitis B surface antigen electrochemical immunosensors. Rezki M; Septiani NLW; Iqbal M; Harimurti S; Sambegoro P; Adhika DR; Yuliarto B J Mater Chem B; 2021 Jul; 9(28):5711-5721. PubMed ID: 34223862 [TBL] [Abstract][Full Text] [Related]
17. Cu-Based Metal-Organic Frameworks as a Catalyst To Construct a Ratiometric Electrochemical Aptasensor for Sensitive Lipopolysaccharide Detection. Shen WJ; Zhuo Y; Chai YQ; Yuan R Anal Chem; 2015 Nov; 87(22):11345-52. PubMed ID: 26465256 [TBL] [Abstract][Full Text] [Related]
18. Copper(II) 1,4-naphthalenedicarboxylate on copper foam nanowire arrays for electrochemical immunosensing of the prostate specific antigen. Chen ZA; Lu W; Bao C; Niu Q; Cao X; Wang H; Yao RX Mikrochim Acta; 2019 Nov; 186(12):758. PubMed ID: 31707617 [TBL] [Abstract][Full Text] [Related]
19. 2D/3D Copper-Based Metal-Organic Frameworks for Electrochemical Detection of Hydrogen Peroxide. Guo X; Lin C; Zhang M; Duan X; Dong X; Sun D; Pan J; You T Front Chem; 2021; 9():743637. PubMed ID: 34692641 [TBL] [Abstract][Full Text] [Related]
20. A mesoporous silver-doped TiO Krishnan S; Tong L; Liu S; Xing R Mikrochim Acta; 2020 Jan; 187(1):82. PubMed ID: 31897862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]