These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 32000148)
1. Atomic scale mechanics explored by in situ transmission electron microscopy with a quartz length-extension resonator as a force sensor. Zhang J; Ishizuka K; Tomitori M; Arai T; Oshima Y Nanotechnology; 2020 May; 31(20):205706. PubMed ID: 32000148 [TBL] [Abstract][Full Text] [Related]
2. Estimation of local variation in Young's modulus over a gold nanocontact using microscopic nanomechanical measurement method. Liu J; Zhang J; Aso K; Arai T; Tomitori M; Oshima Y Nanotechnology; 2024 Oct; 36(1):. PubMed ID: 39374624 [TBL] [Abstract][Full Text] [Related]
3. Peculiar Atomic Bond Nature in Platinum Monatomic Chains. Zhang J; Ishizuka K; Tomitori M; Arai T; Hongo K; Maezono R; Tosatti E; Oshima Y Nano Lett; 2021 May; 21(9):3922-3928. PubMed ID: 33914553 [TBL] [Abstract][Full Text] [Related]
4. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. Han X; Wang L; Yue Y; Zhang Z Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291 [TBL] [Abstract][Full Text] [Related]
5. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy. Ooe H; Fujii M; Tomitori M; Arai T Rev Sci Instrum; 2016 Feb; 87(2):023702. PubMed ID: 26931855 [TBL] [Abstract][Full Text] [Related]
6. A simple method for the determination of qPlus sensor spring constants. Melcher J; Stirling J; Shaw GA Beilstein J Nanotechnol; 2015; 6():1733-42. PubMed ID: 26425425 [TBL] [Abstract][Full Text] [Related]
7. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator. An T; Nishio T; Eguchi T; Ono M; Nomura A; Akiyama K; Hasegawa Y Rev Sci Instrum; 2008 Mar; 79(3):033703. PubMed ID: 18377011 [TBL] [Abstract][Full Text] [Related]
8. Dynamic In-Situ Experimentation on Nanomaterials at the Atomic Scale. Xu T; Sun L Small; 2015 Jul; 11(27):3247-62. PubMed ID: 25703228 [TBL] [Abstract][Full Text] [Related]
9. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy. Castellanos-Gomez A; Agraït N; Rubio-Bollinger G Ultramicroscopy; 2011 Feb; 111(3):186-90. PubMed ID: 21333855 [TBL] [Abstract][Full Text] [Related]
10. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy. Tomitori M; Sasahara A Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i11-i12. PubMed ID: 25359799 [TBL] [Abstract][Full Text] [Related]
11. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis. Dagdeviren OE; Schwarz UD Beilstein J Nanotechnol; 2017; 8():657-666. PubMed ID: 28462067 [TBL] [Abstract][Full Text] [Related]
12. A cheap and quickly adaptable in situ electrical contacting TEM sample holder design. Börrnert F; Voigtländer R; Rellinghaus B; Büchner B; Rümmeli MH; Lichte H Ultramicroscopy; 2014 Apr; 139():1-4. PubMed ID: 24509434 [TBL] [Abstract][Full Text] [Related]
13. New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant. Labidi H; Kupsta M; Huff T; Salomons M; Vick D; Taucer M; Pitters J; Wolkow RA Ultramicroscopy; 2015 Nov; 158():33-7. PubMed ID: 26117434 [TBL] [Abstract][Full Text] [Related]
14. A novel sample holder allowing atomic force microscopy on transmission electron microscopy specimen grids: repetitive, direct correlation between AFM and TEM images. Lin AC; Goh MC J Microsc; 2002 Feb; 205(Pt 2):205-8. PubMed ID: 11879435 [TBL] [Abstract][Full Text] [Related]
15. Double-tilt in situ TEM holder with ultra-high stability. Xu M; Dai S; Blum T; Li L; Pan X Ultramicroscopy; 2018 Sep; 192():1-6. PubMed ID: 29800933 [TBL] [Abstract][Full Text] [Related]
16. Double-tilt in situ TEM holder with multiple electrical contacts and its application in MEMS-based mechanical testing of nanomaterials. Bernal RA; Ramachandramoorthy R; Espinosa HD Ultramicroscopy; 2015 Sep; 156():23-8. PubMed ID: 25974881 [TBL] [Abstract][Full Text] [Related]
17. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments. Oiko VT; Martins BV; Silva PC; Rodrigues V; Ugarte D Rev Sci Instrum; 2014 Mar; 85(3):035003. PubMed ID: 24689612 [TBL] [Abstract][Full Text] [Related]
18. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers. Yeh MK; Tai NH; Chen BY Ultramicroscopy; 2008 Sep; 108(10):1025-9. PubMed ID: 18547729 [TBL] [Abstract][Full Text] [Related]
19. Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Sato K; Miyazaki H; Gondo T; Miyazaki S; Murayama M; Hata S Microscopy (Oxf); 2015 Oct; 64(5):369-75. PubMed ID: 25904643 [TBL] [Abstract][Full Text] [Related]
20. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor. Xie H; Vitard J; Haliyo S; Régnier S; Boukallel M Rev Sci Instrum; 2008 Mar; 79(3):033708. PubMed ID: 18377016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]