BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 32000150)

  • 1. A Rho-GTPase based model explains group advantage in collective chemotaxis of neural crest cells.
    Merchant B; Feng JJ
    Phys Biol; 2020 Mar; 17(3):036002. PubMed ID: 32000150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rho-GTPase based model explains spontaneous collective migration of neural crest cell clusters.
    Merchant B; Edelstein-Keshet L; Feng JJ
    Dev Biol; 2018 Dec; 444 Suppl 1():S262-S273. PubMed ID: 29366821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biased random walk approach for modeling the collective chemotaxis of neural crest cells.
    Freingruber V; Painter KJ; Ptashnyk M; Schumacher LJ
    J Math Biol; 2024 Feb; 88(3):32. PubMed ID: 38407620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Na+-H+ exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells.
    Paradiso A; Cardone RA; Bellizzi A; Bagorda A; Guerra L; Tommasino M; Casavola V; Reshkin SJ
    Breast Cancer Res; 2004; 6(6):R616-28. PubMed ID: 15535843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FilGAP and its close relatives: a mediator of Rho-Rac antagonism that regulates cell morphology and migration.
    Nakamura F
    Biochem J; 2013 Jul; 453(1):17-25. PubMed ID: 23763313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rac1 and RhoA: Networks, loops and bistability.
    Nguyen LK; Kholodenko BN; von Kriegsheim A
    Small GTPases; 2018 Jul; 9(4):316-321. PubMed ID: 27533896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rho GTPases control migration and polarization of adhesion molecules and cytoskeletal ERM components in T lymphocytes.
    del Pozo MA; Vicente-Manzanares M; Tejedor R; Serrador JM; Sánchez-Madrid F
    Eur J Immunol; 1999 Nov; 29(11):3609-20. PubMed ID: 10556816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rho family of small GTPases is involved in epithelial cystogenesis and tubulogenesis.
    Rogers KK; Jou TS; Guo W; Lipschutz JH
    Kidney Int; 2003 May; 63(5):1632-44. PubMed ID: 12675838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coronin-1C and RCC2 guide mesenchymal migration by trafficking Rac1 and controlling GEF exposure.
    Williamson RC; Cowell CA; Hammond CL; Bergen DJ; Roper JA; Feng Y; Rendall TC; Race PR; Bass MD
    J Cell Sci; 2014 Oct; 127(Pt 19):4292-307. PubMed ID: 25074804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Ion Irradiation Suppresses Migration and Invasiveness of Human Pancreatic Carcinoma Cells MIAPaCa-2 via Rac1 and RhoA Degradation.
    Fujita M; Imadome K; Shoji Y; Isozaki T; Endo S; Yamada S; Imai T
    Int J Radiat Oncol Biol Phys; 2015 Sep; 93(1):173-80. PubMed ID: 26279033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urokinase-induced migration of human vascular smooth muscle cells requires coupling of the small GTPases RhoA and Rac1 to the Tyk2/PI3-K signalling pathway.
    Kiian I; Tkachuk N; Haller H; Dumler I
    Thromb Haemost; 2003 May; 89(5):904-14. PubMed ID: 12719789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of H-Ras, RhoA, Rac1 and Cdc42 responsive genes.
    Teramoto H; Malek RL; Behbahani B; Castellone MD; Lee NH; Gutkind JS
    Oncogene; 2003 May; 22(17):2689-97. PubMed ID: 12730683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RhoA and Rac1 play independent roles in lysophosphatidic acid-induced ovarian cancer chemotaxis.
    Hwang H; Kim EK; Park J; Suh PG; Cho YK
    Integr Biol (Camb); 2014 Mar; 6(3):267-76. PubMed ID: 24469268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells.
    Breznau EB; Semack AC; Higashi T; Miller AL
    Mol Biol Cell; 2015 Jul; 26(13):2439-55. PubMed ID: 25947135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts.
    Woo S; Gomez TM
    J Neurosci; 2006 Feb; 26(5):1418-28. PubMed ID: 16452665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering Bistability in the Rac1/RhoA Signaling Network Through Integrating Computational Modeling and Experimentation.
    von Kriegsheim A; Nguyen LK
    Methods Mol Biol; 2018; 1821():21-36. PubMed ID: 30062402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel high-content analysis tool reveals Rab8-driven cytoskeletal reorganization through Rho GTPases, calpain and MT1-MMP.
    Bravo-Cordero JJ; Cordani M; Soriano SF; Díez B; Muñoz-Agudo C; Casanova-Acebes M; Boullosa C; Guadamillas MC; Ezkurdia I; González-Pisano D; Del Pozo MA; Montoya MC
    J Cell Sci; 2016 Apr; 129(8):1734-49. PubMed ID: 26940916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Rho GTPases and their effectors in the secretory process of PC12 cells.
    Frantz C; Coppola T; Regazzi R
    Exp Cell Res; 2002 Feb; 273(2):119-26. PubMed ID: 11822867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane trafficking at the ER/Golgi interface: functional implications of RhoA and Rac1.
    Matas OB; Fritz S; Luna A; Egea G
    Eur J Cell Biol; 2005 Aug; 84(8):699-707. PubMed ID: 16180308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DEF6, a novel PH-DH-like domain protein, is an upstream activator of the Rho GTPases Rac1, Cdc42, and RhoA.
    Mavrakis KJ; McKinlay KJ; Jones P; Sablitzky F
    Exp Cell Res; 2004 Apr; 294(2):335-44. PubMed ID: 15023524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.