BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 32000328)

  • 1. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia.
    Zhang-Turpeinen H; Kivimäenpää M; Aaltonen H; Berninger F; Köster E; Köster K; Menyailo O; Prokushkin A; Pumpanen J
    Sci Total Environ; 2020 Apr; 711():134851. PubMed ID: 32000328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia.
    Knorre AA; Kirdyanov AV; Prokushkin AS; Krusic PJ; Büntgen U
    Sci Total Environ; 2019 Feb; 652():314-319. PubMed ID: 30366332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review.
    Ribeiro-Kumara C; Köster E; Aaltonen H; Köster K
    Environ Res; 2020 May; 184():109328. PubMed ID: 32163772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region.
    Aaltonen H; Palviainen M; Zhou X; Köster E; Berninger F; Pumpanen J; Köster K
    J Environ Manage; 2019 Jul; 241():637-644. PubMed ID: 30962006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests.
    Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost.
    Köster E; Köster K; Berninger F; Prokushkin A; Aaltonen H; Zhou X; Pumpanen J
    J Environ Manage; 2018 Dec; 228():405-415. PubMed ID: 30243076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management.
    Kelly J; Ibáñez TS; Santín C; Doerr SH; Nilsson MC; Holst T; Lindroth A; Kljun N
    Glob Chang Biol; 2021 Sep; 27(17):4181-4195. PubMed ID: 34028945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world.
    Dieleman CM; Rogers BM; Potter S; Veraverbeke S; Johnstone JF; Laflamme J; Solvik K; Walker XJ; Mack MC; Turetsky MR
    Glob Chang Biol; 2020 Nov; 26(11):6062-6079. PubMed ID: 32529727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating long-term wildfire impacts on boreal forest structure in Central Yakutia, Siberia, since the Last Glacial Maximum.
    Glückler R; Gloy J; Dietze E; Herzschuh U; Kruse S
    Fire Ecol; 2024; 20(1):1. PubMed ID: 38186675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental wildfire induced mobility of radiocesium in a boreal forest environment.
    Martinsson J; Pédehontaa-Hiaa G; Malmborg V; Madsen D; Rääf C
    Sci Total Environ; 2021 Oct; 792():148310. PubMed ID: 34146801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest.
    Eller AS; Young LL; Trowbridge AM; Monson RK
    Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wildfires in the Siberian taiga.
    Kharuk VI; Ponomarev EI; Ivanova GA; Dvinskaya ML; Coogan SCP; Flannigan MD
    Ambio; 2021 Nov; 50(11):1953-1974. PubMed ID: 33512668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest.
    Ludwig SM; Alexander HD; Kielland K; Mann PJ; Natali SM; Ruess RW
    Glob Chang Biol; 2018 Dec; 24(12):5841-5852. PubMed ID: 30230664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography controls post-fire changes in soil properties in a Chinese boreal forest.
    Kong JJ; Yang J; Cai W
    Sci Total Environ; 2019 Feb; 651(Pt 2):2662-2670. PubMed ID: 30463121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of active layer thickening to wildfire in the pan-Arctic region: Permafrost type and vegetation type influences.
    Jiang X; Cai H; Yang X
    Sci Total Environ; 2023 Dec; 902():166132. PubMed ID: 37562624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.
    Svendsen SH; Lindwall F; Michelsen A; Rinnan R
    Sci Total Environ; 2016 Dec; 573():131-138. PubMed ID: 27552736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term effects of wildfire on available soil nutrient composition and stoichiometry in a Chinese boreal forest.
    Kong JJ; Yang J; Bai E
    Sci Total Environ; 2018 Nov; 642():1353-1361. PubMed ID: 30045515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.
    Fisher JP; Estop-Aragonés C; Thierry A; Charman DJ; Wolfe SA; Hartley IP; Murton JB; Williams M; Phoenix GK
    Glob Chang Biol; 2016 Sep; 22(9):3127-40. PubMed ID: 26855070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.
    Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R
    Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.