These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32000349)

  • 1. Application of deep learning in aquatic bioassessment: Towards automated identification of non-biting midges.
    Milošević D; Milosavljević A; Predić B; Medeiros AS; Savić-Zdravković D; Stojković Piperac M; Kostić T; Spasić F; Leese F
    Sci Total Environ; 2020 Apr; 711():135160. PubMed ID: 32000349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated identification of aquatic insects: A case study using deep learning and computer vision techniques.
    Simović P; Milosavljević A; Stojanović K; Radenković M; Savić-Zdravković D; Predić B; Petrović A; Božanić M; Milošević D
    Sci Total Environ; 2024 Jul; 935():172877. PubMed ID: 38740196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks.
    Valan M; Makonyi K; Maki A; Vondráček D; Ronquist F
    Syst Biol; 2019 Nov; 68(6):876-895. PubMed ID: 30825372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate image-based identification of macroinvertebrate specimens using deep learning-How much training data is needed?
    Høye TT; Dyrmann M; Kjær C; Nielsen J; Bruus M; Mielec CL; Vesterdal MS; Bjerge K; Madsen SA; Jeppesen MR; Melvad C
    PeerJ; 2022; 10():e13837. PubMed ID: 36032940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.
    Zhang Y; Hong D; McClement D; Oladosu O; Pridham G; Slaney G
    J Neurosci Methods; 2021 Apr; 353():109098. PubMed ID: 33582174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the potential for deep learning and computer vision to identify bumble bee species from images.
    Spiesman BJ; Gratton C; Hatfield RG; Hsu WH; Jepsen S; McCornack B; Patel K; Wang G
    Sci Rep; 2021 Apr; 11(1):7580. PubMed ID: 33828196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights and approaches using deep learning to classify wildlife.
    Miao Z; Gaynor KM; Wang J; Liu Z; Muellerklein O; Norouzzadeh MS; McInturff A; Bowie RCK; Nathan R; Yu SX; Getz WM
    Sci Rep; 2019 May; 9(1):8137. PubMed ID: 31148564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic identification of harmful algae based on multiple convolutional neural networks and transfer learning.
    Yang M; Wang W; Gao Q; Zhao C; Li C; Yang X; Li J; Li X; Cui J; Zhang L; Ji Y; Geng S
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):15311-15324. PubMed ID: 36169848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).
    Failla AJ; Vasquez AA; Hudson P; Fujimoto M; Ram JL
    Bull Entomol Res; 2016 Feb; 106(1):34-46. PubMed ID: 26072670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Identification of Hookahs (Waterpipes) on Instagram: An Application in Feature Extraction Using Convolutional Neural Network and Support Vector Machine Classification.
    Zhang Y; Allem JP; Unger JB; Boley Cruz T
    J Med Internet Res; 2018 Nov; 20(11):e10513. PubMed ID: 30452385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved classification and localization approach to small bowel capsule endoscopy using convolutional neural network.
    Hwang Y; Lee HH; Park C; Tama BA; Kim JS; Cheung DY; Chung WC; Cho YS; Lee KM; Choi MG; Lee S; Lee BI
    Dig Endosc; 2021 May; 33(4):598-607. PubMed ID: 32640059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of local niche- and dispersal-based factors that may influence chironomid assemblages in bioassessment.
    Milošević D; Medeiros AS; Cvijanović D; Jenačković Gocić D; Đurđević A; Čerba D; Stojković Piperac M
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51951-51963. PubMed ID: 35257340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What Does Deep Learning See? Insights From a Classifier Trained to Predict Contrast Enhancement Phase From CT Images.
    Philbrick KA; Yoshida K; Inoue D; Akkus Z; Kline TL; Weston AD; Korfiatis P; Takahashi N; Erickson BJ
    AJR Am J Roentgenol; 2018 Dec; 211(6):1184-1193. PubMed ID: 30403527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic classification of microplastics and natural organic matter mixtures using a deep learning model.
    Lee S; Jeong H; Hong SM; Yun D; Lee J; Kim E; Cho KH
    Water Res; 2023 Nov; 246():120710. PubMed ID: 37857009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PENYEK: Automated brown planthopper detection from imperfect sticky pad images using deep convolutional neural network.
    Nazri A; Mazlan N; Muharam F
    PLoS One; 2018; 13(12):e0208501. PubMed ID: 30571683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Automated Light Trap to Monitor Moths (Lepidoptera) Using Computer Vision-Based Tracking and Deep Learning.
    Bjerge K; Nielsen JB; Sepstrup MV; Helsing-Nielsen F; Høye TT
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.