These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 32000486)
1. Neural Network Force Fields for Metal Growth Based on Energy Decompositions. Hu Q; Weng M; Chen X; Li S; Pan F; Wang LW J Phys Chem Lett; 2020 Feb; 11(4):1364-1369. PubMed ID: 32000486 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning for Accurate Force Calculations in Molecular Dynamics Simulations. Pattnaik P; Raghunathan S; Kalluri T; Bhimalapuram P; Jawahar CV; Priyakumar UD J Phys Chem A; 2020 Aug; 124(34):6954-6967. PubMed ID: 32786995 [TBL] [Abstract][Full Text] [Related]
3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
4. Neural Network Approach for a Rapid Prediction of Metal-Supported Borophene Properties. Mignon P; Allouche AR; Innis NR; Bousige C J Am Chem Soc; 2023 Dec; 145(50):27857-27866. PubMed ID: 38063165 [TBL] [Abstract][Full Text] [Related]
5. Deep machine learning interatomic potential for liquid silica. Balyakin IA; Rempel SV; Ryltsev RE; Rempel AA Phys Rev E; 2020 Nov; 102(5-1):052125. PubMed ID: 33327164 [TBL] [Abstract][Full Text] [Related]
6. Uncovering the decomposition mechanism of nitrate ester plasticized polyether (NEPE): a neural network potential simulation. Wen M; Shi J; Chang X; Han J; Pang K; Chen D; Chu Q Phys Chem Chem Phys; 2024 Oct; 26(39):25719-25730. PubMed ID: 39352740 [TBL] [Abstract][Full Text] [Related]
7. Revealing the thermal decomposition mechanism of RDX crystals by a neural network potential. Chu Q; Chang X; Ma K; Fu X; Chen D Phys Chem Chem Phys; 2022 Nov; 24(42):25885-25894. PubMed ID: 36259743 [TBL] [Abstract][Full Text] [Related]
8. Prediction of optoelectronic properties of Cu Selvaratnam B; Koodali RT; Miró P Phys Chem Chem Phys; 2020 Jul; 22(26):14910-14917. PubMed ID: 32584353 [TBL] [Abstract][Full Text] [Related]
10. Learning from the density to correct total energy and forces in first principle simulations. Dick S; Fernandez-Serra M J Chem Phys; 2019 Oct; 151(14):144102. PubMed ID: 31615245 [TBL] [Abstract][Full Text] [Related]
11. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. Ludwig J; Vlachos DG J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200 [TBL] [Abstract][Full Text] [Related]
12. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy. Andolina CM; Williamson P; Saidi WA J Chem Phys; 2020 Apr; 152(15):154701. PubMed ID: 32321274 [TBL] [Abstract][Full Text] [Related]
13. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials. Schienbein P; Blumberger J Phys Chem Chem Phys; 2022 Jun; 24(25):15365-15375. PubMed ID: 35703465 [TBL] [Abstract][Full Text] [Related]
14. Determination of structure and properties of molecular crystals from first principles. Szalewicz K Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310 [TBL] [Abstract][Full Text] [Related]
15. Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water. Gomes-Filho MS; Torres A; Reily Rocha A; Pedroza LS J Phys Chem B; 2023 Feb; 127(6):1422-1428. PubMed ID: 36730848 [TBL] [Abstract][Full Text] [Related]
16. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Staub R; Gantzer P; Harabuchi Y; Maeda S; Varnek A Molecules; 2023 May; 28(11):. PubMed ID: 37298952 [TBL] [Abstract][Full Text] [Related]
17. Embedded correlated wavefunction schemes: theory and applications. Libisch F; Huang C; Carter EA Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211 [TBL] [Abstract][Full Text] [Related]
18. Molecular Dynamics Simulation of Zinc Ion in Water with an ab Initio Based Neural Network Potential. Xu M; Zhu T; Zhang JZH J Phys Chem A; 2019 Aug; 123(30):6587-6595. PubMed ID: 31294560 [TBL] [Abstract][Full Text] [Related]
19. A Scalable Molecular Force Field Parameterization Method Based on Density Functional Theory and Quantum-Level Machine Learning. Galvelis R; Doerr S; Damas JM; Harvey MJ; De Fabritiis G J Chem Inf Model; 2019 Aug; 59(8):3485-3493. PubMed ID: 31322877 [TBL] [Abstract][Full Text] [Related]
20. Comparison of different machine learning models for the prediction of forces in copper and silicon dioxide. Li W; Ando Y Phys Chem Chem Phys; 2018 Dec; 20(47):30006-30020. PubMed ID: 30480270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]