These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32000486)

  • 21. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces.
    Kroes GJ; Díaz C
    Chem Soc Rev; 2016 Jun; 45(13):3658-700. PubMed ID: 26235525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using Neural Network Force Fields to Ascertain the Quality of
    Torres A; Pedroza LS; Fernandez-Serra M; Rocha AR
    J Phys Chem B; 2021 Sep; 125(38):10772-10778. PubMed ID: 34543024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of Li atom diffusion in amorphous Li
    Li W; Ando Y; Minamitani E; Watanabe S
    J Chem Phys; 2017 Dec; 147(21):214106. PubMed ID: 29221381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomistic Simulation of HF Etching Process of Amorphous Si
    Hong C; Oh S; An H; Kim PH; Kim Y; Ko JH; Sue J; Oh D; Park S; Han S
    ACS Appl Mater Interfaces; 2024 Sep; 16(36):48457-48469. PubMed ID: 39198036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling Intermolecular Interactions with Exchange-Hole Dipole Moment Dispersion Corrections to Neural Network Potentials.
    Tu NTP; Williamson S; Johnson ER; Rowley CN
    J Phys Chem B; 2024 Sep; 128(35):8290-8302. PubMed ID: 39166778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes.
    Butler PWV; Hafizi R; Day GM
    J Phys Chem A; 2024 Feb; 128(5):945-957. PubMed ID: 38277275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ab Initio Flexible Force Field for Metal-Organic Frameworks Using Dummy Model Coordination Bonds.
    Jawahery S; Rampal N; Moosavi SM; Witman M; Smit B
    J Chem Theory Comput; 2019 Jun; 15(6):3666-3677. PubMed ID: 31082258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iterative training set refinement enables reactive molecular dynamics
    Chen L; Sukuba I; Probst M; Kaiser A
    RSC Adv; 2020 Jan; 10(8):4293-4299. PubMed ID: 35495270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acceleration of saddle-point searches with machine learning.
    Peterson AA
    J Chem Phys; 2016 Aug; 145(7):074106. PubMed ID: 27544086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials.
    Sours TG; Kulkarni AR
    J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(3):1455-1463. PubMed ID: 36733763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab-initio simulations of materials using VASP: Density-functional theory and beyond.
    Hafner J
    J Comput Chem; 2008 Oct; 29(13):2044-78. PubMed ID: 18623101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach to describe chemical environments in high-dimensional neural network potentials.
    Kocer E; Mason JK; Erturk H
    J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Atomic-Resolution Uncertainty Estimation for Neural Network Potentials Using a Replica Ensemble.
    Jeong W; Yoo D; Lee K; Jung J; Han S
    J Phys Chem Lett; 2020 Aug; 11(15):6090-6096. PubMed ID: 32598159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum-accurate machine learning potentials for metal-organic frameworks using temperature driven active learning.
    Sharma A; Sanvito S
    NPJ Comput Mater; 2024; 10(1):237. PubMed ID: 39391672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach.
    Sun YY; Kim YH; Lee K; Zhang SB
    J Chem Phys; 2008 Oct; 129(15):154102. PubMed ID: 19045171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of sodium binding energy on 2D VS
    Putungan DB; Su S; Gao L; Goyal A; Lin SH; Garg A
    Phys Chem Chem Phys; 2023 May; 25(21):15008-15014. PubMed ID: 37211947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An On-the-Fly Approach to Construct Generalized Energy-Based Fragmentation Machine Learning Force Fields of Complex Systems.
    Cheng Z; Zhao D; Ma J; Li W; Li S
    J Phys Chem A; 2020 Jun; 124(24):5007-5014. PubMed ID: 32459485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.
    Mills JD; Ben-Nun M; Rollin K; Bromley MW; Li J; Hinde RJ; Winstead CL; Sheehy JA; Boatz JA; Langhoff PW
    J Phys Chem B; 2016 Aug; 120(33):8321-37. PubMed ID: 27232159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.