BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32000579)

  • 1. Syndecan-4 Protects the Heart From the Profibrotic Effects of Thrombin-Cleaved Osteopontin.
    Herum KM; Romaine A; Wang A; Melleby AO; Strand ME; Pacheco J; Braathen B; Dunér P; Tønnessen T; Lunde IG; Sjaastad I; Brakebusch C; McCulloch AD; Gomez MF; Carlson CR; Christensen G
    J Am Heart Assoc; 2020 Feb; 9(3):e013518. PubMed ID: 32000579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innate immune signaling induces expression and shedding of the heparan sulfate proteoglycan syndecan-4 in cardiac fibroblasts and myocytes, affecting inflammation in the pressure-overloaded heart.
    Strand ME; Herum KM; Rana ZA; Skrbic B; Askevold ET; Dahl CP; Vistnes M; Hasic A; Kvaløy H; Sjaastad I; Carlson CR; Tønnessen T; Gullestad L; Christensen G; Lunde IG
    FEBS J; 2013 May; 280(10):2228-47. PubMed ID: 23374111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress.
    Herum KM; Lunde IG; Skrbic B; Florholmen G; Behmen D; Sjaastad I; Carlson CR; Gomez MF; Christensen G
    J Mol Cell Cardiol; 2013 Jan; 54():73-81. PubMed ID: 23178899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart.
    Herum KM; Lunde IG; Skrbic B; Louch WE; Hasic A; Boye S; Unger A; Brorson SH; Sjaastad I; Tønnessen T; Linke WA; Gomez MF; Christensen G
    Cardiovasc Res; 2015 May; 106(2):217-26. PubMed ID: 25587045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin.
    Kon S; Ikesue M; Kimura C; Aoki M; Nakayama Y; Saito Y; Kurotaki D; Diao H; Matsui Y; Segawa T; Maeda M; Kojima T; Uede T
    J Exp Med; 2008 Jan; 205(1):25-33. PubMed ID: 18158320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding of syndecan-4 promotes immune cell recruitment and mitigates cardiac dysfunction after lipopolysaccharide challenge in mice.
    Strand ME; Aronsen JM; Braathen B; Sjaastad I; Kvaløy H; Tønnessen T; Christensen G; Lunde IG
    J Mol Cell Cardiol; 2015 Nov; 88():133-44. PubMed ID: 26449522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of collagen type III in injured myocardium prevents cardiac systolic dysfunction by changing the balance of collagen distribution.
    Uchinaka A; Yoshida M; Tanaka K; Hamada Y; Mori S; Maeno Y; Miyagawa S; Sawa Y; Nagata K; Yamamoto H; Kawaguchi N
    J Thorac Cardiovasc Surg; 2018 Jul; 156(1):217-226.e3. PubMed ID: 29551535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prenatal Alcohol Exposure Causes Adverse Cardiac Extracellular Matrix Changes and Dysfunction in Neonatal Mice.
    Ninh VK; El Hajj EC; Mouton AJ; Gardner JD
    Cardiovasc Toxicol; 2019 Oct; 19(5):389-400. PubMed ID: 30684169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syndecans in heart fibrosis.
    Lunde IG; Herum KM; Carlson CC; Christensen G
    Cell Tissue Res; 2016 Sep; 365(3):539-52. PubMed ID: 27411689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis.
    Uchinaka A; Hamada Y; Mori S; Miyagawa S; Saito A; Sawa Y; Matsuura N; Yamamoto H; Kawaguchi N
    Mol Cell Biochem; 2015 Oct; 408(1-2):191-203. PubMed ID: 26112906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure.
    Li J; Yousefi K; Ding W; Singh J; Shehadeh LA
    Cardiovasc Res; 2017 May; 113(6):633-643. PubMed ID: 28453726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production.
    Sawaki D; Czibik G; Pini M; Ternacle J; Suffee N; Mercedes R; Marcelin G; Surenaud M; Marcos E; Gual P; Clément K; Hue S; Adnot S; Hatem SN; Tsuchimochi I; Yoshimitsu T; Hénégar C; Derumeaux G
    Circulation; 2018 Aug; 138(8):809-822. PubMed ID: 29500246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syndecan-4 deficiency accelerates the transition from compensated hypertrophy to heart failure following pressure overload.
    Li G; Xie J; Chen J; Li R; Wu H; Zhang X; Chen Q; Gu R; Xu B
    Cardiovasc Pathol; 2017; 28():74-79. PubMed ID: 28395201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis.
    Yu L; Ruifrok WP; Meissner M; Bos EM; van Goor H; Sanjabi B; van der Harst P; Pitt B; Goldstein IJ; Koerts JA; van Veldhuisen DJ; Bank RA; van Gilst WH; Silljé HH; de Boer RA
    Circ Heart Fail; 2013 Jan; 6(1):107-17. PubMed ID: 23230309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction.
    Alex L; Russo I; Holoborodko V; Frangogiannis NG
    Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H934-H949. PubMed ID: 30004258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in Pressure Overload-Induced Heart Failure.
    Verjans R; Peters T; Beaumont FJ; van Leeuwen R; van Herwaarden T; Verhesen W; Munts C; Bijnen M; Henkens M; Diez J; de Windt LJ; van Nieuwenhoven FA; van Bilsen M; Goumans MJ; Heymans S; González A; Schroen B
    Hypertension; 2018 Feb; 71(2):280-288. PubMed ID: 29255073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing.
    Esfandiary A; Kutsche HS; Schreckenberg R; Weber M; Pak O; Kojonazarov B; Sydykov A; Hirschhäuser C; Wolf A; Haag D; Hecker M; Fink L; Seeger W; Ghofrani HA; Schermuly RT; Weißmann N; Schulz R; Rohrbach S; Li L; Sommer N; Schlüter KD
    Cardiovasc Res; 2019 Jun; 115(7):1217-1227. PubMed ID: 30850841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress.
    Kazakov A; Hall RA; Werner C; Meier T; Trouvain A; Rodionycheva S; Nickel A; Lammert F; Maack C; Böhm M; Laufs U
    Basic Res Cardiol; 2018 Sep; 113(6):42. PubMed ID: 30191336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16, an orally active inhibitor of ALK5.
    Engebretsen KV; Skårdal K; Bjørnstad S; Marstein HS; Skrbic B; Sjaastad I; Christensen G; Bjørnstad JL; Tønnessen T
    J Mol Cell Cardiol; 2014 Nov; 76():148-57. PubMed ID: 25169971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling.
    Li Y; Li Z; Zhang C; Li P; Wu Y; Wang C; Bond Lau W; Ma XL; Du J
    Circulation; 2017 May; 135(21):2041-2057. PubMed ID: 28249877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.