These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 32000800)
1. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. Silva M; Ferreira FN; Alves NM; Paiva MC J Nanobiotechnology; 2020 Jan; 18(1):23. PubMed ID: 32000800 [TBL] [Abstract][Full Text] [Related]
2. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals. Domingues RM; Chiera S; Gershovich P; Motta A; Reis RL; Gomes ME Adv Healthc Mater; 2016 Jun; 5(11):1364-75. PubMed ID: 27059281 [TBL] [Abstract][Full Text] [Related]
4. [Application of silk-based tissue engineering scaffold for tendon / ligament regeneration]. Hu Y; Le H; Jin Z; Chen X; Yin Z; Shen W; Ouyang H Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 Mar; 45(2):152-60. PubMed ID: 27273989 [TBL] [Abstract][Full Text] [Related]
5. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Bharadwaz A; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012 [TBL] [Abstract][Full Text] [Related]
6. Fibre-based scaffolding techniques for tendon tissue engineering. Wu Y; Han Y; Wong YS; Fuh JYH J Tissue Eng Regen Med; 2018 Jul; 12(7):1798-1821. PubMed ID: 29757529 [TBL] [Abstract][Full Text] [Related]
7. Biofabrication and Signaling Strategies for Tendon/Ligament Interfacial Tissue Engineering. Shiroud Heidari B; Ruan R; De-Juan-Pardo EM; Zheng M; Doyle B ACS Biomater Sci Eng; 2021 Feb; 7(2):383-399. PubMed ID: 33492125 [TBL] [Abstract][Full Text] [Related]
8. Font Tellado S; Bonani W; Balmayor ER; Foehr P; Motta A; Migliaresi C; van Griensven M Tissue Eng Part A; 2017 Aug; 23(15-16):859-872. PubMed ID: 28330431 [TBL] [Abstract][Full Text] [Related]
9. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Olvera D; Schipani R; Sathy BN; Kelly DJ Biomed Mater; 2019 Apr; 14(3):035016. PubMed ID: 30844776 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions. Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556 [TBL] [Abstract][Full Text] [Related]
11. Exploring the in vitro and in vivo compatibility of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites: Prospects for tendon and ligament applications. Correia Pinto V; Costa-Almeida R; Rodrigues I; Guardão L; Soares R; Miranda Guedes R J Biomed Mater Res A; 2017 Aug; 105(8):2182-2190. PubMed ID: 28370990 [TBL] [Abstract][Full Text] [Related]
12. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Font Tellado S; Chiera S; Bonani W; Poh PSP; Migliaresi C; Motta A; Balmayor ER; van Griensven M Acta Biomater; 2018 May; 72():150-166. PubMed ID: 29550439 [TBL] [Abstract][Full Text] [Related]
13. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Rinoldi C; Kijeńska-Gawrońska E; Khademhosseini A; Tamayol A; Swieszkowski W Adv Healthc Mater; 2021 Apr; 10(7):e2001305. PubMed ID: 33576158 [TBL] [Abstract][Full Text] [Related]
14. [Advances of research on preparation of tendon tissue engineered scaffolds using electrospinning]. Tan J; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Jul; 26(7):865-8. PubMed ID: 22905627 [TBL] [Abstract][Full Text] [Related]
15. Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration. Masehi-Lano JJ; Chung EJ Methods Mol Biol; 2018; 1758():1-10. PubMed ID: 29679318 [TBL] [Abstract][Full Text] [Related]
16. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. No YJ; Castilho M; Ramaswamy Y; Zreiqat H Adv Mater; 2020 May; 32(18):e1904511. PubMed ID: 31814177 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Mohammadi Nasr S; Rabiee N; Hajebi S; Ahmadi S; Fatahi Y; Hosseini M; Bagherzadeh M; Ghadiri AM; Rabiee M; Jajarmi V; Webster TJ Int J Nanomedicine; 2020; 15():4205-4224. PubMed ID: 32606673 [TBL] [Abstract][Full Text] [Related]
18. Functional biomaterials for tendon/ligament repair and regeneration. Tang Y; Wang Z; Xiang L; Zhao Z; Cui W Regen Biomater; 2022; 9():rbac062. PubMed ID: 36176715 [TBL] [Abstract][Full Text] [Related]
19. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. Naghashzargar E; Farè S; Catto V; Bertoldi S; Semnani D; Karbasi S; Tanzi MC J Appl Biomater Funct Mater; 2015 Jul; 13(2):e156-68. PubMed ID: 25589157 [TBL] [Abstract][Full Text] [Related]
20. High-resolution x-ray tomographic morphological characterisation of electrospun nanofibrous bundles for tendon and ligament regeneration and replacement. Sensini A; Cristofolini L; Focarete ML; Belcari J; Zucchelli A; Kao A; Tozzi G J Microsc; 2018 Dec; 272(3):196-206. PubMed ID: 29797707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]