BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32000840)

  • 1. Direct and indirect effects of predation and parasitism on the Anopheles gambiae mosquito.
    Ong'wen F; Onyango PO; Bukhari T
    Parasit Vectors; 2020 Jan; 13(1):43. PubMed ID: 32000840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of the mermithid nematode, Romanomermis iyengari, for the biocontrol of Anopheles gambiae, the major malaria vector in sub-Saharan Africa.
    Abagli AZ; Alavo TBC; Perez-Pacheco R; Platzer EG
    Parasit Vectors; 2019 May; 12(1):253. PubMed ID: 31118105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and indirect effect of predators on Anopheles gambiae sensu stricto.
    Chobu M; Nkwengulila G; Mahande AM; Mwang'onde BJ; Kweka EJ
    Acta Trop; 2015 Feb; 142():131-7. PubMed ID: 25438260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands.
    Kweka EJ; Zhou G; Gilbreath TM; Afrane Y; Nyindo M; Githeko AK; Yan G
    Parasit Vectors; 2011 Jul; 4():128. PubMed ID: 21729269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi.
    Bukhari T; Middelman A; Koenraadt CJ; Takken W; Knols BG
    Malar J; 2010 Jan; 9():22. PubMed ID: 20085659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larval predation in malaria vectors and its potential implication in malaria transmission: an overlooked ecosystem service?
    Roux O; Robert V
    Parasit Vectors; 2019 May; 12(1):217. PubMed ID: 31068213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae.
    Hauser G; Thiévent K; Koella JC
    Parasit Vectors; 2020 Feb; 13(1):107. PubMed ID: 32106886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing effects of non-native crayfish on mosquito survival.
    Bucciarelli GM; Suh D; Lamb AD; Roberts D; Sharpton D; Shaffer HB; Fisher RN; Kats LB
    Conserv Biol; 2019 Feb; 33(1):122-131. PubMed ID: 30079610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A meta-analysis reveals that dragonflies and damselflies can provide effective biological control of mosquitoes.
    Priyadarshana TS; Slade EM
    J Anim Ecol; 2023 Aug; 92(8):1589-1600. PubMed ID: 37272224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Potential of a New Beauveria bassiana Isolate for Mosquito Larval Control.
    Tawidian P; Kang Q; Michel K
    J Med Entomol; 2023 Jan; 60(1):131-147. PubMed ID: 36633608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larval habitat selection by females of two malaria vectors in response to predation risk.
    Sougué E; Dabiré RK; Roux O
    Acta Trop; 2021 Sep; 221():106016. PubMed ID: 34157290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of applications and limitations of using aquatic macroinvertebrate predators for biocontrol of the African malaria mosquito, Anopheles gambiae sensu lato.
    Onen H; Kaddumukasa MA; Kayondo JK; Akol AM; Tripet F
    Parasit Vectors; 2024 Jun; 17(1):257. PubMed ID: 38867296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi.
    Vogels CB; Bukhari T; Koenraadt CJ
    J Invertebr Pathol; 2014 Jun; 119():19-24. PubMed ID: 24694552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of larval exposure to sublethal doses of ivermectin on adult fitness and susceptibility to ivermectin in Anopheles gambiae s.s.
    Kiuru C; Ominde K; Muturi M; Babu L; Wanjiku C; Chaccour C; Maia MF
    Parasit Vectors; 2023 Aug; 16(1):293. PubMed ID: 37605264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anopheles larval species composition and characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern Ethiopia.
    Getachew D; Balkew M; Tekie H
    Malar J; 2020 Feb; 19(1):65. PubMed ID: 32046734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predatory and competitive interaction in Anopheles gambiae sensu lato larval breeding habitats in selected villages of central Uganda.
    Onen H; Odong R; Chemurot M; Tripet F; Kayondo JK
    Parasit Vectors; 2021 Aug; 14(1):420. PubMed ID: 34419140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesocosm Experiments to Quantify Predation of Mosquito Larvae by Aquatic Predators to Determine Potential of Ecological Control of Malaria Vectors in Ethiopia.
    Olkeba BK; Goethals PLM; Boets P; Duchateau L; Degefa T; Eba K; Yewhalaw D; Mereta ST
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34199088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of environmental variables and kdr resistance genotype on survival probability and infection rates in Anopheles gambiae (s.s.).
    Kristan M; Abeku TA; Lines J
    Parasit Vectors; 2018 Oct; 11(1):560. PubMed ID: 30367663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania.
    Dida GO; Anyona DN; Abuom PO; Akoko D; Adoka SO; Matano AS; Owuor PO; Ouma C
    Infect Dis Poverty; 2018 Jan; 7(1):2. PubMed ID: 29343279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioural responses of Anopheles gambiae sensu stricto M and S molecular form larvae to an aquatic predator in Burkina Faso.
    Gimonneau G; Pombi M; Dabiré RK; Diabaté A; Morand S; Simard F
    Parasit Vectors; 2012 Mar; 5():65. PubMed ID: 22463735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.