These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32000911)
1. High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications. Mencattini A; De Ninno A; Mancini J; Businaro L; Martinelli E; Schiavoni G; Mattei F Methods Enzymol; 2020; 632():479-502. PubMed ID: 32000911 [TBL] [Abstract][Full Text] [Related]
2. Drug testing of monodisperse arrays of live microdissected tumors using a valved multiwell microfluidic platform. Lockhart EJ; Horowitz LF; Rodríguez A; Zhu S; Nguyen T; Mehrabi M; Gujral TS; Folch A Lab Chip; 2024 May; 24(10):2683-2699. PubMed ID: 38651213 [TBL] [Abstract][Full Text] [Related]
3. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Al-Samadi A; Poor B; Tuomainen K; Liu V; Hyytiäinen A; Suleymanova I; Mesimaki K; Wilkman T; Mäkitie A; Saavalainen P; Salo T Exp Cell Res; 2019 Oct; 383(2):111508. PubMed ID: 31356815 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic Co-Culture Models for Dissecting the Immune Response in in vitro Tumor Microenvironments. De Ninno A; Bertani FR; Gerardino A; Schiavoni G; Musella M; Galassi C; Mattei F; Sistigu A; Businaro L J Vis Exp; 2021 Apr; (170):. PubMed ID: 33999026 [TBL] [Abstract][Full Text] [Related]
5. Advancing Point-of-Care Applications with Droplet Microfluidics: From Single-Cell to Multicellular Analysis. Sharkey C; White R; Finocchiaro M; Thomas J; Estevam J; Konry T Annu Rev Biomed Eng; 2024 Jul; 26(1):119-139. PubMed ID: 38316063 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic cell chips for high-throughput drug screening. Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838 [TBL] [Abstract][Full Text] [Related]
7. Selective Targeting of Tumor Cells in a Microfluidic Tumor Model with Multiple Cell Types. van de Crommert B; Palacio-Castañeda V; Verdurmen WPR Methods Mol Biol; 2024; 2804():237-251. PubMed ID: 38753152 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Shang M; Soon RH; Lim CT; Khoo BL; Han J Lab Chip; 2019 Jan; 19(3):369-386. PubMed ID: 30644496 [TBL] [Abstract][Full Text] [Related]
9. Microfluidics for studying metastatic patterns of lung cancer. Ruzycka M; Cimpan MR; Rios-Mondragon I; Grudzinski IP J Nanobiotechnology; 2019 May; 17(1):71. PubMed ID: 31133019 [TBL] [Abstract][Full Text] [Related]
10. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Businaro L; De Ninno A; Schiavoni G; Lucarini V; Ciasca G; Gerardino A; Belardelli F; Gabriele L; Mattei F Lab Chip; 2013 Jan; 13(2):229-39. PubMed ID: 23108434 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic device for recreating a tumor microenvironment in vitro. Toley BJ; Ganz DE; Walsh CL; Forbes NS J Vis Exp; 2011 Nov; (57):. PubMed ID: 22126742 [TBL] [Abstract][Full Text] [Related]
12. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models. Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839 [TBL] [Abstract][Full Text] [Related]
13. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Walsh CL; Babin BM; Kasinskas RW; Foster JA; McGarry MJ; Forbes NS Lab Chip; 2009 Feb; 9(4):545-54. PubMed ID: 19190790 [TBL] [Abstract][Full Text] [Related]
14. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449 [TBL] [Abstract][Full Text] [Related]
15. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening. Brooks A; Zhang Y; Chen J; Zhao CX Adv Healthc Mater; 2024 Aug; 13(21):e2302436. PubMed ID: 38224141 [TBL] [Abstract][Full Text] [Related]
16. On-chip anticancer drug screening - Recent progress in microfluidic platforms to address challenges in chemotherapy. Dhiman N; Kingshott P; Sumer H; Sharma CS; Rath SN Biosens Bioelectron; 2019 Jul; 137():236-254. PubMed ID: 31121461 [TBL] [Abstract][Full Text] [Related]
17. A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions. Moore N; Doty D; Zielstorff M; Kariv I; Moy LY; Gimbel A; Chevillet JR; Lowry N; Santos J; Mott V; Kratchman L; Lau T; Addona G; Chen H; Borenstein JT Lab Chip; 2018 Jun; 18(13):1844-1858. PubMed ID: 29796561 [TBL] [Abstract][Full Text] [Related]
18. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. Mattei F; Schiavoni G; De Ninno A; Lucarini V; Sestili P; Sistigu A; Fragale A; Sanchez M; Spada M; Gerardino A; Belardelli F; Businaro L; Gabriele L J Immunotoxicol; 2014 Oct; 11(4):337-46. PubMed ID: 24597645 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924 [TBL] [Abstract][Full Text] [Related]
20. Engineering Microphysiological Immune System Responses on Chips. Miller CP; Shin W; Ahn EH; Kim HJ; Kim DH Trends Biotechnol; 2020 Aug; 38(8):857-872. PubMed ID: 32673588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]