BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32001012)

  • 1. Cancer classification from time series microarray data through regulatory Dynamic Bayesian Networks.
    Kourou K; Rigas G; Papaloukas C; Mitsis M; Fotiadis DI
    Comput Biol Med; 2020 Jan; 116():103577. PubMed ID: 32001012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering gene regulatory networks of multiple phenotypic groups using dynamic Bayesian networks.
    Suter P; Kuipers J; Beerenwinkel N
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35679575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring gene networks from time series microarray data using dynamic Bayesian networks.
    Kim SY; Imoto S; Miyano S
    Brief Bioinform; 2003 Sep; 4(3):228-35. PubMed ID: 14582517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning the structure of gene regulatory networks from time series gene expression data.
    Li H; Wang N; Gong P; Perkins EJ; Zhang C
    BMC Genomics; 2011 Dec; 12 Suppl 5(Suppl 5):S13. PubMed ID: 22369588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.
    Grzegorczyk M; Husmeier D
    Stat Appl Genet Mol Biol; 2012 Jul; 11(4):. PubMed ID: 22850067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of nonlinear gene regulatory networks through optimized ensemble of support vector regression and dynamic Bayesian networks.
    Akutekwe A; Seker H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8177-80. PubMed ID: 26738192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using qualitative probability in reverse-engineering gene regulatory networks.
    Ibrahim ZM; Ngom A; Tawfik AY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):326-34. PubMed ID: 20876933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.
    de Luis Balaguer MA; Sozzani R
    Methods Mol Biol; 2017; 1629():331-348. PubMed ID: 28623595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Bayesian Network Learning to Infer Sparse Models From Time Series Gene Expression Data.
    Ajmal HB; Madden MG
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2794-2805. PubMed ID: 34181549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes.
    Grzegorczyk M; Husmeier D
    Bioinformatics; 2011 Mar; 27(5):693-9. PubMed ID: 21177328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the microarray gene expression for breast cancer progression after the application modified logistic regression.
    Morais-Rodrigues F; Silv Erio-Machado R; Kato RB; Rodrigues DLN; Valdez-Baez J; Fonseca V; San EJ; Gomes LGR; Dos Santos RG; Vinicius CanĂ¡rio Viana M; da Cruz Ferraz Dutra J; Teixeira Dornelles Parise M; Parise D; Campos FF; de Souza SJ; Ortega JM; Barh D; Ghosh P; Azevedo VAC; Dos Santos MA
    Gene; 2020 Feb; 726():144168. PubMed ID: 31759986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.
    Yeh HY; Cheng SW; Lin YC; Yeh CY; Lin SF; Soo VW
    BMC Med Genomics; 2009 Dec; 2():70. PubMed ID: 20025723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.
    Yu F; Chen MH; Kuo L; Talbott H; Davis JS
    BMC Bioinformatics; 2015 Aug; 16():245. PubMed ID: 26250443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State Space Model with hidden variables for reconstruction of gene regulatory networks.
    Wu X; Li P; Wang N; Gong P; Perkins EJ; Deng Y; Zhang C
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S3. PubMed ID: 22784622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression.
    Sugimoto N; Iba H
    Genome Inform; 2004; 15(2):121-30. PubMed ID: 15706498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel parametric approach to mine gene regulatory relationship from microarray datasets.
    Liu W; Li D; Liu Q; Zhu Y; He F
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S15. PubMed ID: 21172050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.