These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32001012)

  • 1. Cancer classification from time series microarray data through regulatory Dynamic Bayesian Networks.
    Kourou K; Rigas G; Papaloukas C; Mitsis M; Fotiadis DI
    Comput Biol Med; 2020 Jan; 116():103577. PubMed ID: 32001012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering gene regulatory networks of multiple phenotypic groups using dynamic Bayesian networks.
    Suter P; Kuipers J; Beerenwinkel N
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35679575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring gene networks from time series microarray data using dynamic Bayesian networks.
    Kim SY; Imoto S; Miyano S
    Brief Bioinform; 2003 Sep; 4(3):228-35. PubMed ID: 14582517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning the structure of gene regulatory networks from time series gene expression data.
    Li H; Wang N; Gong P; Perkins EJ; Zhang C
    BMC Genomics; 2011 Dec; 12 Suppl 5(Suppl 5):S13. PubMed ID: 22369588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.
    Grzegorczyk M; Husmeier D
    Stat Appl Genet Mol Biol; 2012 Jul; 11(4):. PubMed ID: 22850067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of nonlinear gene regulatory networks through optimized ensemble of support vector regression and dynamic Bayesian networks.
    Akutekwe A; Seker H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8177-80. PubMed ID: 26738192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using qualitative probability in reverse-engineering gene regulatory networks.
    Ibrahim ZM; Ngom A; Tawfik AY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):326-34. PubMed ID: 20876933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.
    de Luis Balaguer MA; Sozzani R
    Methods Mol Biol; 2017; 1629():331-348. PubMed ID: 28623595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Bayesian Network Learning to Infer Sparse Models From Time Series Gene Expression Data.
    Ajmal HB; Madden MG
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2794-2805. PubMed ID: 34181549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes.
    Grzegorczyk M; Husmeier D
    Bioinformatics; 2011 Mar; 27(5):693-9. PubMed ID: 21177328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the microarray gene expression for breast cancer progression after the application modified logistic regression.
    Morais-Rodrigues F; Silv Erio-Machado R; Kato RB; Rodrigues DLN; Valdez-Baez J; Fonseca V; San EJ; Gomes LGR; Dos Santos RG; Vinicius CanĂ¡rio Viana M; da Cruz Ferraz Dutra J; Teixeira Dornelles Parise M; Parise D; Campos FF; de Souza SJ; Ortega JM; Barh D; Ghosh P; Azevedo VAC; Dos Santos MA
    Gene; 2020 Feb; 726():144168. PubMed ID: 31759986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.
    Yeh HY; Cheng SW; Lin YC; Yeh CY; Lin SF; Soo VW
    BMC Med Genomics; 2009 Dec; 2():70. PubMed ID: 20025723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.
    Yu F; Chen MH; Kuo L; Talbott H; Davis JS
    BMC Bioinformatics; 2015 Aug; 16():245. PubMed ID: 26250443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State Space Model with hidden variables for reconstruction of gene regulatory networks.
    Wu X; Li P; Wang N; Gong P; Perkins EJ; Deng Y; Zhang C
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S3. PubMed ID: 22784622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression.
    Sugimoto N; Iba H
    Genome Inform; 2004; 15(2):121-30. PubMed ID: 15706498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel parametric approach to mine gene regulatory relationship from microarray datasets.
    Liu W; Li D; Liu Q; Zhu Y; He F
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S15. PubMed ID: 21172050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.