BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32001436)

  • 1. Cyp26b1 is an essential regulator of distal airway epithelial differentiation during lung development.
    Daniel E; Barlow HR; Sutton GI; Gu X; Htike Y; Cowdin MA; Cleaver O
    Development; 2020 Feb; 147(4):. PubMed ID: 32001436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial Cyp26b1 restrains murine heart valve growth during development.
    Ahuja N; Hiltabidle MS; Rajasekhar H; Voss S; Lu SZ; Barlow HR; Cowdin MA; Daniel E; Vaddaraju V; Anandakumar T; Black E; Cleaver O; Maynard C
    Dev Biol; 2022 Jun; 486():81-95. PubMed ID: 35364055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SHH propagates distal limb bud development by enhancing CYP26B1-mediated retinoic acid clearance via AER-FGF signalling.
    Probst S; Kraemer C; Demougin P; Sheth R; Martin GR; Shiratori H; Hamada H; Iber D; Zeller R; Zuniga A
    Development; 2011 May; 138(10):1913-23. PubMed ID: 21471156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of retinoid levels by CYP26B1 is important for lymphatic vascular development in the mouse embryo.
    Bowles J; Secker G; Nguyen C; Kazenwadel J; Truong V; Frampton E; Curtis C; Skoczylas R; Davidson TL; Miura N; Hong YK; Koopman P; Harvey NL; François M
    Dev Biol; 2014 Feb; 386(1):25-33. PubMed ID: 24361262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyp26b1 regulates retinoic acid-dependent signals in T cells and its expression is inhibited by transforming growth factor-β.
    Takeuchi H; Yokota A; Ohoka Y; Iwata M
    PLoS One; 2011 Jan; 6(1):e16089. PubMed ID: 21249211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb.
    Yashiro K; Zhao X; Uehara M; Yamashita K; Nishijima M; Nishino J; Saijoh Y; Sakai Y; Hamada H
    Dev Cell; 2004 Mar; 6(3):411-22. PubMed ID: 15030763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of retinoic acid signaling during lung morphogenesis.
    Malpel S; Mendelsohn C; Cardoso WV
    Development; 2000 Jul; 127(14):3057-67. PubMed ID: 10862743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Undifferentiated spermatogonia regulate
    Parekh PA; Garcia TX; Waheeb R; Jain V; Gandhi P; Meistrich ML; Shetty G; Hofmann MC
    FASEB J; 2019 Jul; 33(7):8423-8435. PubMed ID: 30991836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinoic acid signaling regulates sonic hedgehog and bone morphogenetic protein signalings during genital tubercle development.
    Liu L; Suzuki K; Nakagata N; Mihara K; Matsumaru D; Ogino Y; Yashiro K; Hamada H; Liu Z; Evans SM; Mendelsohn C; Yamada G
    Birth Defects Res B Dev Reprod Toxicol; 2012 Feb; 95(1):79-88. PubMed ID: 22127979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis.
    Stoney PN; Fragoso YD; Saeed RB; Ashton A; Goodman T; Simons C; Gomaa MS; Sementilli A; Sementilli L; Ross AW; Morgan PJ; McCaffery PJ
    Brain Struct Funct; 2016 Jul; 221(6):3315-26. PubMed ID: 26374207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Thalamus Regulates Retinoic Acid Signaling and Development of Parvalbumin Interneurons in Postnatal Mouse Prefrontal Cortex.
    Larsen R; Proue A; Scott EP; Christiansen M; Nakagawa Y
    eNeuro; 2019; 6(1):. PubMed ID: 30868103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis.
    Abu-Abed S; MacLean G; Fraulob V; Chambon P; Petkovich M; Dollé P
    Mech Dev; 2002 Jan; 110(1-2):173-7. PubMed ID: 11744378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity.
    Schönberger K; Obier N; Romero-Mulero MC; Cauchy P; Mess J; Pavlovich PV; Zhang YW; Mitterer M; Rettkowski J; Lalioti ME; Jäcklein K; Curtis JD; Féret B; Sommerkamp P; Morganti C; Ito K; Ghyselinck NB; Trompouki E; Buescher JM; Pearce EL; Cabezas-Wallscheid N
    Cell Stem Cell; 2022 Jan; 29(1):131-148.e10. PubMed ID: 34706256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent Roles of CYP26B1 and Endogenous Retinoic Acid in Mouse Fetal Gonads.
    Bellutti L; Abby E; Tourpin S; Messiaen S; Moison D; Trautmann E; Guerquin MJ; Rouiller-Fabre V; Habert R; Livera G
    Biomolecules; 2019 Sep; 9(10):. PubMed ID: 31561560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic deletion of Cyp26b1 negatively impacts limb skeletogenesis by inhibiting chondrogenesis.
    Dranse HJ; Sampaio AV; Petkovich M; Underhill TM
    J Cell Sci; 2011 Aug; 124(Pt 16):2723-34. PubMed ID: 21807937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Cyp26b1/Rarg compound-null mice reveals two genetically separable effects of retinoic acid on limb outgrowth.
    Pennimpede T; Cameron DA; MacLean GA; Petkovich M
    Dev Biol; 2010 Mar; 339(1):179-86. PubMed ID: 20043900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of endogenous retinoic acid level through CYP26B1 is required for elevation of palatal shelves.
    Okano J; Kimura W; Papaionnou VE; Miura N; Yamada G; Shiota K; Sakai Y
    Dev Dyn; 2012 Nov; 241(11):1744-56. PubMed ID: 22972661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYP26B1 declines postnatally in Sertoli cells independently of androgen action in the mouse testis.
    Edelsztein NY; Kashimada K; Schteingart HF; Rey RA
    Mol Reprod Dev; 2020 Jan; 87(1):66-77. PubMed ID: 31755607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CYP26B1 promotes male germ cell differentiation by suppressing STRA8-dependent meiotic and STRA8-independent mitotic pathways.
    Saba R; Wu Q; Saga Y
    Dev Biol; 2014 May; 389(2):173-81. PubMed ID: 24576537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyp26b1 mediates differential neurogenicity in axial-specific populations of adult spinal cord progenitor cells.
    Leung C; Chan SC; Tsang SL; Wu W; Sham MH
    Stem Cells Dev; 2012 Aug; 21(12):2252-61. PubMed ID: 22214285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.