BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 32001613)

  • 1. Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury.
    Fabbiani G; Reali C; Valentín-Kahan A; Rehermann MI; Fagetti J; Falco MV; Russo RE
    J Neurosci; 2020 Mar; 40(11):2246-2258. PubMed ID: 32001613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord.
    Marichal N; García G; Radmilovich M; Trujillo-Cenóz O; Russo RE
    Stem Cells; 2012 Sep; 30(9):2020-31. PubMed ID: 22821702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord.
    Corns LF; Deuchars J; Deuchars SA
    Neurosci Lett; 2013 Oct; 553():57-62. PubMed ID: 23872091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purinergic signalling in a latent stem cell niche of the rat spinal cord.
    Marichal N; Fabbiani G; Trujillo-Cenóz O; Russo RE
    Purinergic Signal; 2016 Jun; 12(2):331-41. PubMed ID: 26988236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord.
    Falco MV; Fabbiani G; Maciel C; Valdivia S; Vitureira N; Russo RE
    Front Cell Neurosci; 2023; 17():1288676. PubMed ID: 38164435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
    Hamilton LK; Truong MK; Bednarczyk MR; Aumont A; Fernandes KJ
    Neuroscience; 2009 Dec; 164(3):1044-56. PubMed ID: 19747531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury.
    Marichal N; Reali C; Rehermann MI; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1015():241-264. PubMed ID: 29080030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.
    Rodriguez-Jimenez FJ; Alastrue-Agudo A; Stojkovic M; Erceg S; Moreno-Manzano V
    Int J Mol Sci; 2015 Nov; 16(11):26608-18. PubMed ID: 26561800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche.
    Marichal N; Reali C; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1041():55-79. PubMed ID: 29204829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connexin and pannexin hemichannels in inflammatory responses of glia and neurons.
    Bennett MV; Garré JM; Orellana JA; Bukauskas FF; Nedergaard M; Sáez JC
    Brain Res; 2012 Dec; 1487():3-15. PubMed ID: 22975435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells.
    Rodriguez-Jimenez FJ; Alastrue A; Stojkovic M; Erceg S; Moreno-Manzano V
    Cell Tissue Res; 2016 Aug; 365(2):295-307. PubMed ID: 27221278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord.
    Russo RE; Reali C; Radmilovich M; Fernández A; Trujillo-Cenóz O
    J Neurosci; 2008 Mar; 28(13):3298-309. PubMed ID: 18367597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Akhirin regulates the proliferation and differentiation of neural stem cells in intact and injured mouse spinal cord.
    Abdulhaleem FA; Song X; Kawano R; Uezono N; Ito A; Ahmed G; Hossain M; Nakashima K; Tanaka H; Ohta K
    Dev Neurobiol; 2015 May; 75(5):494-504. PubMed ID: 25331329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions.
    Lacroix S; Hamilton LK; Vaugeois A; Beaudoin S; Breault-Dugas C; Pineau I; Lévesque SA; Grégoire CA; Fernandes KJ
    PLoS One; 2014; 9(1):e85916. PubMed ID: 24475059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ependymal cell reactions in spinal cord segments after compression injury in adult rat.
    Takahashi M; Arai Y; Kurosawa H; Sueyoshi N; Shirai S
    J Neuropathol Exp Neurol; 2003 Feb; 62(2):185-94. PubMed ID: 12578228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous neural stem cell responses to stroke and spinal cord injury.
    Grégoire CA; Goldenstein BL; Floriddia EM; Barnabé-Heider F; Fernandes KJ
    Glia; 2015 Aug; 63(8):1469-82. PubMed ID: 25921491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat.
    Mothe AJ; Tator CH
    Neuroscience; 2005; 131(1):177-87. PubMed ID: 15680701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cells in the adult human spinal cord ependymal region do not proliferate after injury.
    Paniagua-Torija B; Norenberg M; Arevalo-Martin A; Carballosa-Gautam MM; Campos-Martin Y; Molina-Holgado E; Garcia-Ovejero D
    J Pathol; 2018 Dec; 246(4):415-421. PubMed ID: 30091291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enigmatic central canal contacting cells: immature neurons in "standby mode"?
    Marichal N; García G; Radmilovich M; Trujillo-Cenóz O; Russo RE
    J Neurosci; 2009 Aug; 29(32):10010-24. PubMed ID: 19675235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.