These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32001679)

  • 21. Rechargeable Hydrogen Storage System Based on the Dehydrogenative Coupling of Ethylenediamine with Ethanol.
    Hu P; Ben-David Y; Milstein D
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):1061-4. PubMed ID: 26211515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.
    Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA
    ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation.
    Hu P; Fogler E; Diskin-Posner Y; Iron MA; Milstein D
    Nat Commun; 2015 Apr; 6():6859. PubMed ID: 25882348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic (de)hydrogenation promoted by non-precious metals - Co, Fe and Mn: recent advances in an emerging field.
    Filonenko GA; van Putten R; Hensen EJM; Pidko EA
    Chem Soc Rev; 2018 Feb; 47(4):1459-1483. PubMed ID: 29334388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.
    Sordakis K; Tang C; Vogt LK; Junge H; Dyson PJ; Beller M; Laurenczy G
    Chem Rev; 2018 Jan; 118(2):372-433. PubMed ID: 28985048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Realizing Hydrogen De/Absorption Under Low Temperature for MgH
    Sun Z; Zhang L; Yan N; Zheng J; Bian T; Yang Z; Su S
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application.
    Wang Y; Zhu L; Shao Z; Li G; Lan Y; Liu Q
    J Am Chem Soc; 2019 Oct; 141(43):17337-17349. PubMed ID: 31633346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manganese-Catalyzed Multicomponent Synthesis of Pyrimidines from Alcohols and Amidines.
    Deibl N; Kempe R
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1663-1666. PubMed ID: 28078735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems.
    Brückner N; Obesser K; Bösmann A; Teichmann D; Arlt W; Dungs J; Wasserscheid P
    ChemSusChem; 2014 Jan; 7(1):229-35. PubMed ID: 23956191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles.
    Deraedt C; Ye R; Ralston WT; Toste FD; Somorjai GA
    J Am Chem Soc; 2017 Dec; 139(49):18084-18092. PubMed ID: 29144751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports.
    Feng Z; Chen X; Bai X
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36172-36185. PubMed ID: 32556981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release.
    Mellmann D; Sponholz P; Junge H; Beller M
    Chem Soc Rev; 2016 Jul; 45(14):3954-88. PubMed ID: 27119123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions.
    Guo J; Yin CK; Zhong DL; Wang YL; Qi T; Liu GH; Shen LT; Zhou QS; Peng ZH; Yao H; Li XB
    ChemSusChem; 2021 Jul; 14(13):2655-2681. PubMed ID: 33963668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis.
    Bi QY; Lin JD; Liu YM; Du XL; Wang JQ; He HY; Cao Y
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13583-7. PubMed ID: 25382034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manganese-Catalyzed Environmentally Benign Dehydrogenative Coupling of Alcohols and Amines to Form Aldimines and H2: A Catalytic and Mechanistic Study.
    Mukherjee A; Nerush A; Leitus G; Shimon LJ; Ben David Y; Espinosa Jalapa NA; Milstein D
    J Am Chem Soc; 2016 Apr; 138(13):4298-301. PubMed ID: 26924231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible Hydrogen Releasing and Fixing with Poly(Vinylfluorenol) through a Mild Ir-Catalyzed Dehydrogenation and Electrochemical Hydrogenation.
    Kato R; Oka K; Yoshimasa K; Nakajima M; Nishide H; Oyaizu K
    Macromol Rapid Commun; 2019 Aug; 40(16):e1900139. PubMed ID: 31188503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent developments of nanocatalyzed liquid-phase hydrogen generation.
    Wang C; Astruc D
    Chem Soc Rev; 2021 Mar; 50(5):3437-3484. PubMed ID: 33492311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cobalt-Pincer Complexes in Catalysis.
    Junge K; Papa V; Beller M
    Chemistry; 2019 Jan; 25(1):122-143. PubMed ID: 30182374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A rechargeable hydrogen battery based on Ru catalysis.
    Hsu SF; Rommel S; Eversfield P; Muller K; Klemm E; Thiel WR; Plietker B
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):7074-8. PubMed ID: 24803414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.