These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32001718)

  • 21. Optogenetically controlled protein kinases for regulation of cellular signaling.
    Leopold AV; Chernov KG; Verkhusha VV
    Chem Soc Rev; 2018 Apr; 47(7):2454-2484. PubMed ID: 29498733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of upconversion nanoparticles in cellular optogenetics.
    Lin Y; Yao Y; Zhang W; Fang Q; Zhang L; Zhang Y; Xu Y
    Acta Biomater; 2021 Nov; 135():1-12. PubMed ID: 34461347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A guide to the optogenetic regulation of endogenous molecules.
    Manoilov KY; Verkhusha VV; Shcherbakova DM
    Nat Methods; 2021 Sep; 18(9):1027-1037. PubMed ID: 34446923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes.
    Chernov KG; Redchuk TA; Omelina ES; Verkhusha VV
    Chem Rev; 2017 May; 117(9):6423-6446. PubMed ID: 28401765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells.
    Benedetti L; Marvin JS; Falahati H; Guillén-Samander A; Looger LL; De Camilli P
    Elife; 2020 Nov; 9():. PubMed ID: 33174843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.
    Shcherbakova DM; Cox Cammer N; Huisman TM; Verkhusha VV; Hodgson L
    Nat Chem Biol; 2018 Jun; 14(6):591-600. PubMed ID: 29686359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.
    Redchuk TA; Kaberniuk AA; Verkhusha VV
    Nat Protoc; 2018 May; 13(5):1121-1136. PubMed ID: 29700485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity.
    Shaaya M; Fauser J; Zhurikhina A; Conage-Pough JE; Huyot V; Brennan M; Flower CT; Matsche J; Khan S; Natarajan V; Rehman J; Kota P; White FM; Tsygankov D; Karginov AV
    Elife; 2020 Sep; 9():. PubMed ID: 32965214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging of morphological and biochemical hallmarks of apoptosis with optimized optogenetic tools.
    Godwin WC; Hoffmann GF; Gray TJ; Hughes RM
    J Biol Chem; 2019 Nov; 294(45):16918-16929. PubMed ID: 31582560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons.
    Schöneborn H; Raudzus F; Coppey M; Neumann S; Heumann R
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30558189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An optimized optogenetic clustering tool for probing protein interaction and function.
    Taslimi A; Vrana JD; Chen D; Borinskaya S; Mayer BJ; Kennedy MJ; Tucker CL
    Nat Commun; 2014 Sep; 5():4925. PubMed ID: 25233328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Basis of Design and Engineering for Advanced Plant Optogenetics.
    Banerjee S; Mitra D
    Trends Plant Sci; 2020 Jan; 25(1):35-65. PubMed ID: 31699521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fine-Tuning Protein Self-Organization by Orthogonal Chemo-Optogenetic Tools.
    Sun H; Jia H; Ramirez-Diaz DA; Budisa N; Schwille P
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4501-4506. PubMed ID: 33155720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.
    Baaske J; Gonschorek P; Engesser R; Dominguez-Monedero A; Raute K; Fischbach P; Müller K; Cachat E; Schamel WWA; Minguet S; Davies JA; Timmer J; Weber W; Zurbriggen MD
    Sci Rep; 2018 Oct; 8(1):15024. PubMed ID: 30301909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering genetically-encoded tools for optogenetic control of protein activity.
    Liu Q; Tucker CL
    Curr Opin Chem Biol; 2017 Oct; 40():17-23. PubMed ID: 28527343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The flightless I protein colocalizes with actin- and microtubule-based structures in motile Swiss 3T3 fibroblasts: evidence for the involvement of PI 3-kinase and Ras-related small GTPases.
    Davy DA; Campbell HD; Fountain S; de Jong D; Crouch MF
    J Cell Sci; 2001 Feb; 114(Pt 3):549-62. PubMed ID: 11171324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reliably Engineering and Controlling Stable Optogenetic Gene Circuits in Mammalian Cells.
    Guinn MT; Coraci D; Guinn L; Balázsi G
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34309594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans.
    Shen Y; Campbell RE; Côté DC; Paquet ME
    Front Neural Circuits; 2020; 14():41. PubMed ID: 32760252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in
    Oda S; Sato-Ebine E; Nakamura A; Kimura KD; Aoki K
    ACS Synth Biol; 2023 Mar; 12(3):700-708. PubMed ID: 36802521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.