These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32001741)

  • 1. Iodinated Polyesters with Enhanced X-ray Contrast Properties for Biomedical Imaging.
    Lex TR; Brummel BR; Attia MF; Giambalvo LN; Lee KG; Van Horn BA; Whitehead DC; Alexis F
    Sci Rep; 2020 Jan; 10(1):1508. PubMed ID: 32001741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Functionalized Cyclic Lactide Monomer for Synthesis of Water-Soluble Poly(Lactic Acid) and Amphiphilic Diblock Poly(Lactic Acid).
    Zhang X; Dai Y
    Macromol Rapid Commun; 2017 Jan; 38(2):. PubMed ID: 27859972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive deep tissue imaging of iodine modified poly(caprolactone-co-1-4-oxepan-1,5-dione) using X-ray.
    Olsen TR; Davis LL; Nicolau SE; Duncan CC; Whitehead DC; Van Horn BA; Alexis F
    Acta Biomater; 2015 Jul; 20():94-103. PubMed ID: 25818945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polylactides-Methods of synthesis and characterization.
    Pretula J; Slomkowski S; Penczek S
    Adv Drug Deliv Rev; 2016 Dec; 107():3-16. PubMed ID: 27174153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Polyesters for Biomedical Imaging.
    Attia MF; Brummel BR; Lex TR; Van Horn BA; Whitehead DC; Alexis F
    Adv Healthc Mater; 2018 Nov; 7(22):e1800798. PubMed ID: 30295005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility.
    Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M
    J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strontium Isopropoxide: A Highly Active Catalyst for the Ring-Opening Polymerization of Lactide and Various Lactones.
    Bandelli D; Weber C; Schubert US
    Macromol Rapid Commun; 2019 Oct; 40(20):e1900306. PubMed ID: 31506988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation.
    Osten KM; Mehrkhodavandi P
    Acc Chem Res; 2017 Nov; 50(11):2861-2869. PubMed ID: 29087695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization.
    Kaihara S; Matsumura S; Mikos AG; Fisher JP
    Nat Protoc; 2007; 2(11):2767-71. PubMed ID: 18007612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Diethylzinc/Gallic Acid and Diethylzinc/Gallic Acid Ester Catalytic Systems for the Ring-Opening Polymerization of rac-Lactide.
    Żółtowska K; Piotrowska U; Oledzka E; Sobczak M
    Molecules; 2015 Dec; 20(12):21909-23. PubMed ID: 26670224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyester Stereocomplexes Beyond PLA: Could Synthetic Opportunities Revolutionize Established Material Blending?
    Bandelli D; Alex J; Weber C; Schubert US
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900560. PubMed ID: 31793732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid.
    Basu A; Kunduru KR; Katzhendler J; Domb AJ
    Adv Drug Deliv Rev; 2016 Dec; 107():82-96. PubMed ID: 27527666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors.
    Inkinen S; Hakkarainen M; Albertsson AC; Södergård A
    Biomacromolecules; 2011 Mar; 12(3):523-32. PubMed ID: 21332178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional lactide monomers: methodology and polymerization.
    Gerhardt WW; Noga DE; Hardcastle KI; García AJ; Collard DM; Weck M
    Biomacromolecules; 2006 Jun; 7(6):1735-42. PubMed ID: 16768392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-lactic acid synthesis for application in biomedical devices - a review.
    Lasprilla AJ; Martinez GA; Lunelli BH; Jardini AL; Filho RM
    Biotechnol Adv; 2012; 30(1):321-8. PubMed ID: 21756992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternating Sequence Control for Poly(ester amide)s by Organocatalyzed Ring-Opening Polymerization.
    Liang Y; Pan JL; Sun LH; Ma JM; Jiang H; Li ZL
    Macromol Rapid Commun; 2019 Nov; 40(22):e1900435. PubMed ID: 31596528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers.
    Cohn D; Salomon AH
    Biomaterials; 2005 May; 26(15):2297-305. PubMed ID: 15585232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly (epsilon-caprolactone).
    Nottelet B; Coudane J; Vert M
    Biomaterials; 2006 Oct; 27(28):4948-54. PubMed ID: 16759692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.