These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32001753)
1. Reversed Doppler effect based on hybridized acoustic Mie resonances. Liu C; Long H; Zhou C; Cheng Y; Liu X Sci Rep; 2020 Jan; 10(1):1519. PubMed ID: 32001753 [TBL] [Abstract][Full Text] [Related]
2. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Cheng Y; Zhou C; Yuan BG; Wu DJ; Wei Q; Liu XJ Nat Mater; 2015 Oct; 14(10):1013-9. PubMed ID: 26322718 [TBL] [Abstract][Full Text] [Related]
3. Inverse Doppler Effects in Broadband Acoustic Metamaterials. Zhai SL; Zhao XP; Liu S; Shen FL; Li LL; Luo CR Sci Rep; 2016 Aug; 6():32388. PubMed ID: 27578317 [TBL] [Abstract][Full Text] [Related]
4. Comment on "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus" [J. Acoust. Soc. Am. 132, 2887-2895 (2012)]. Marston PL J Acoust Soc Am; 2014 Mar; 135(3):1031-3. PubMed ID: 24606246 [TBL] [Abstract][Full Text] [Related]
5. Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus. Huang HH; Sun CT J Acoust Soc Am; 2012 Oct; 132(4):2887-95. PubMed ID: 23039555 [TBL] [Abstract][Full Text] [Related]
6. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Kaina N; Lemoult F; Fink M; Lerosey G Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466 [TBL] [Abstract][Full Text] [Related]
7. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Zhu R; Liu XN; Hu GK; Sun CT; Huang GL Nat Commun; 2014 Nov; 5():5510. PubMed ID: 25417671 [TBL] [Abstract][Full Text] [Related]
8. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave. Quan L; Qian F; Liu X; Gong X J Acoust Soc Am; 2016 Jun; 139(6):3373. PubMed ID: 27369164 [TBL] [Abstract][Full Text] [Related]
9. Zero-reflection acoustic metamaterial with a negative refractive index. Park CM; Lee SH Sci Rep; 2019 Mar; 9(1):3372. PubMed ID: 30833636 [TBL] [Abstract][Full Text] [Related]
10. Acoustic metamaterials: From local resonances to broad horizons. Ma G; Sheng P Sci Adv; 2016 Feb; 2(2):e1501595. PubMed ID: 26933692 [TBL] [Abstract][Full Text] [Related]
11. Focusing on Plates: Controlling Guided Waves using Negative Refraction. Philippe FD; Murray TW; Prada C Sci Rep; 2015 Jun; 5():11112. PubMed ID: 26053960 [TBL] [Abstract][Full Text] [Related]
12. Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus. Jing X; Meng Y; Sun X Sci Rep; 2015 Nov; 5():16110. PubMed ID: 26538085 [TBL] [Abstract][Full Text] [Related]
13. Ultrasonic metamaterials with negative modulus. Fang N; Xi D; Xu J; Ambati M; Srituravanich W; Sun C; Zhang X Nat Mater; 2006 Jun; 5(6):452-6. PubMed ID: 16648856 [TBL] [Abstract][Full Text] [Related]
14. Predicting double negativity using transmitted phase in space coiling metamaterials. Maurya SK; Pandey A; Shukla S; Saxena S R Soc Open Sci; 2018 May; 5(5):171042. PubMed ID: 29892344 [TBL] [Abstract][Full Text] [Related]
16. Amplification of acoustic evanescent waves using metamaterial slabs. Park CM; Park JJ; Lee SH; Seo YM; Kim CK; Lee SH Phys Rev Lett; 2011 Nov; 107(19):194301. PubMed ID: 22181610 [TBL] [Abstract][Full Text] [Related]
17. Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure. Chen M; Jiang H; Zhang H; Li D; Wang Y Sci Rep; 2018 Jan; 8(1):1861. PubMed ID: 29382848 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional optical metamaterial with a negative refractive index. Valentine J; Zhang S; Zentgraf T; Ulin-Avila E; Genov DA; Bartal G; Zhang X Nature; 2008 Sep; 455(7211):376-9. PubMed ID: 18690249 [TBL] [Abstract][Full Text] [Related]
20. Extreme material parameters accessible by active acoustic metamaterials with Willis coupling. Craig SR; Wang B; Su X; Banerjee D; Welch PJ; Yip MC; Hu Y; Shi C J Acoust Soc Am; 2022 Mar; 151(3):1722. PubMed ID: 35364942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]