These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 32003127)
1. Performance of pedigree and various forms of marker-derived relationship coefficients in genomic prediction and their correlations. Solaymani S; Ayatollahi Mehrgardi A; Esmailizadeh A; Tusell L; Momen M J Anim Breed Genet; 2020 Sep; 137(5):423-437. PubMed ID: 32003127 [TBL] [Abstract][Full Text] [Related]
2. A predictive assessment of genetic correlations between traits in chickens using markers. Momen M; Mehrgardi AA; Sheikhy A; Esmailizadeh A; Fozi MA; Kranis A; Valente BD; Rosa GJ; Gianola D Genet Sel Evol; 2017 Feb; 49(1):16. PubMed ID: 28148241 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships. Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184 [TBL] [Abstract][Full Text] [Related]
4. Different models of genetic variation and their effect on genomic evaluation. Clark SA; Hickey JM; van der Werf JH Genet Sel Evol; 2011 May; 43(1):18. PubMed ID: 21575265 [TBL] [Abstract][Full Text] [Related]
5. Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Tiezzi F; Maltecca C Genet Sel Evol; 2015 Apr; 47(1):24. PubMed ID: 25886167 [TBL] [Abstract][Full Text] [Related]
6. Genomic predictions of growth curves in Holstein dairy cattle based on parameter estimates from nonlinear models combined with different kernel functions. Yin T; König S J Dairy Sci; 2020 Aug; 103(8):7222-7237. PubMed ID: 32534925 [TBL] [Abstract][Full Text] [Related]
7. Weighting genomic and genealogical information for genetic parameter estimation and breeding value prediction in tropical beef cattle. Raidan FSS; Porto-Neto LR; Li Y; Lehnert SA; Reverter A J Anim Sci; 2018 Mar; 96(2):612-617. PubMed ID: 29385460 [TBL] [Abstract][Full Text] [Related]
8. Marker genotyping error effects on genomic predictions under different genetic architectures. Akbarpour T; Ghavi Hossein-Zadeh N; Shadparvar AA Mol Genet Genomics; 2021 Jan; 296(1):79-89. PubMed ID: 32995954 [TBL] [Abstract][Full Text] [Related]
9. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Bangera R; Correa K; Lhorente JP; Figueroa R; Yáñez JM BMC Genomics; 2017 Jan; 18(1):121. PubMed ID: 28143402 [TBL] [Abstract][Full Text] [Related]
10. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. Su G; Christensen OF; Janss L; Lund MS J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495 [TBL] [Abstract][Full Text] [Related]
11. Temporal dynamics of genetic parameters and SNP effects for performance and disorder traits in poultry undergoing genomic selection. Richter J; Hidalgo J; Bussiman F; Breen V; Misztal I; Lourenco D J Anim Sci; 2024 Jan; 102():. PubMed ID: 38576313 [TBL] [Abstract][Full Text] [Related]
12. The impact of clustering methods for cross-validation, choice of phenotypes, and genotyping strategies on the accuracy of genomic predictions. Baller JL; Howard JT; Kachman SD; Spangler ML J Anim Sci; 2019 Apr; 97(4):1534-1549. PubMed ID: 30721970 [TBL] [Abstract][Full Text] [Related]
13. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. Ma P; Lund MS; Aamand GP; Su G J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255 [TBL] [Abstract][Full Text] [Related]
14. Genomic Model with Correlation Between Additive and Dominance Effects. Xiang T; Christensen OF; Vitezica ZG; Legarra A Genetics; 2018 Jul; 209(3):711-723. PubMed ID: 29743175 [TBL] [Abstract][Full Text] [Related]
15. On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding. Meuwissen TH; Odegard J; Andersen-Ranberg I; Grindflek E Genet Sel Evol; 2014 Aug; 46(1):49. PubMed ID: 25158793 [TBL] [Abstract][Full Text] [Related]
16. The importance of identity-by-state information for the accuracy of genomic selection. Luan T; Woolliams JA; Odegård J; Dolezal M; Roman-Ponce SI; Bagnato A; Meuwissen TH Genet Sel Evol; 2012 Aug; 44(1):28. PubMed ID: 22937985 [TBL] [Abstract][Full Text] [Related]
17. Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression. Gianola D; Fernando RL; Schön CC Theor Popul Biol; 2020 Apr; 132():47-59. PubMed ID: 31830483 [TBL] [Abstract][Full Text] [Related]
18. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Vallejo RL; Leeds TD; Gao G; Parsons JE; Martin KE; Evenhuis JP; Fragomeni BO; Wiens GD; Palti Y Genet Sel Evol; 2017 Feb; 49(1):17. PubMed ID: 28148220 [TBL] [Abstract][Full Text] [Related]
19. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models. Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970 [TBL] [Abstract][Full Text] [Related]
20. Identity-by-descent genomic selection using selective and sparse genotyping for binary traits. Ødegård J; Meuwissen TH Genet Sel Evol; 2015 Feb; 47(1):8. PubMed ID: 25888522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]