BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 32003668)

  • 1. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods.
    Boniface PK; Sano CM; Elizabeth FI
    Curr Drug Targets; 2020; 21(7):681-712. PubMed ID: 32003668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis.
    Rub A; Shaker K; Kashif M; Arish M; Dukhyil AAB; Alshehri BM; Alaidarous MA; Banawas S; Amir K
    Protein Pept Lett; 2019; 26(5):371-376. PubMed ID: 30827222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents.
    Albalawi AE; Alanazi AD; Sharifi I; Ezzatkhah F
    Acta Parasitol; 2021 Sep; 66(3):797-811. PubMed ID: 33770343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase.
    Ortalli M; Ilari A; Colotti G; De Ionna I; Battista T; Bisi A; Gobbi S; Rampa A; Di Martino RMC; Gentilomi GA; Varani S; Belluti F
    Eur J Med Chem; 2018 May; 152():527-541. PubMed ID: 29758517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species.
    Nieto-Meneses R; Castillo R; Hernández-Campos A; Maldonado-Rangel A; Matius-Ruiz JB; Trejo-Soto PJ; Nogueda-Torres B; Dea-Ayuela MA; Bolás-Fernández F; Méndez-Cuesta C; Yépez-Mulia L
    Exp Parasitol; 2018 Jan; 184():82-89. PubMed ID: 29191699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promising therapeutic targets for antileishmanial drugs.
    Werbovetz KA
    Expert Opin Ther Targets; 2002 Aug; 6(4):407-22. PubMed ID: 12223057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level.
    González-Matos M; Aguado ME; Izquierdo M; Monzote L; González-Bacerio J
    Exp Parasitol; 2024 May; 260():108747. PubMed ID: 38518969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Nitro (NO
    Kamdem BP; Elizabeth FI
    Curr Drug Targets; 2021; 22(4):379-398. PubMed ID: 33371845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights about resveratrol analogs against trypanothione reductase of
    da Silva AD; Dos Santos JA; Machado PA; Alves LA; Laque LC; de Souza VC; Coimbra ES; Capriles PVSZ
    J Biomol Struct Dyn; 2019 Jul; 37(11):2960-2969. PubMed ID: 30058445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally Designed Minimal Bioactive Domains of AS-48 Bacteriocin Homologs Possess Potent Antileishmanial Properties.
    Corman HN; Ross JN; Fields FR; Shoue DA; McDowell MA; Lee SW
    Microbiol Spectr; 2022 Dec; 10(6):e0265822. PubMed ID: 36342284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase.
    Pandey RK; Kumbhar BV; Sundar S; Kunwar A; Prajapati VK
    J Recept Signal Transduct Res; 2017 Feb; 37(1):60-70. PubMed ID: 27147242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery.
    das Neves GM; Kagami LP; Gonçalves IL; Eifler-Lima VL
    Future Med Chem; 2019 Aug; 11(16):2107-2130. PubMed ID: 31370699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent patents in the treatment and prevention of leishmaniasis.
    Shahid SK
    Pharm Pat Anal; 2023 Sep; 12(5):237-248. PubMed ID: 38063376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening natural products database for identification of potential antileishmanial chemotherapeutic agents.
    Venkatesan SK; Saudagar P; Shukla AK; Dubey VK
    Interdiscip Sci; 2011 Sep; 3(3):217-31. PubMed ID: 21956744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-silico analyses of sesquiterpene-related compounds on selected Leishmania enzyme-based targets.
    Bernal FA; Coy-Barrera E
    Molecules; 2014 Apr; 19(5):5550-69. PubMed ID: 24786692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs.
    Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A
    Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of nanotechnology in treatment of leishmaniasis: A Review.
    Akbari M; Oryan A; Hatam G
    Acta Trop; 2017 Aug; 172():86-90. PubMed ID: 28460833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides for leishmaniasis.
    Cobb SL; Denny PW
    Curr Opin Investig Drugs; 2010 Aug; 11(8):868-75. PubMed ID: 20721829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promising Molecular Targets Related to Polyamine Biosynthesis in Drug Discovery against Leishmaniasis.
    Santiago-Silva KM; Camargo PG; Bispo MLF
    Med Chem; 2022; 19(1):2-9. PubMed ID: 35838221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some Scaffolds as Anti-leishmanial Agents: A Review.
    Mahender T; Pankaj W; Kumar SP; Ankur V; Kumar SS
    Mini Rev Med Chem; 2022; 22(5):743-757. PubMed ID: 34517799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.