These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32003983)

  • 21. [Heavy metal absorption, transportation and accumulation mechanisms in hyperaccumulator Thlaspi caerulescens].
    Liu G; Chai T; Sun T
    Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):561-8. PubMed ID: 20684297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging roles of microRNAs in the mediation of drought stress response in plants.
    Ding Y; Tao Y; Zhu C
    J Exp Bot; 2013 Aug; 64(11):3077-86. PubMed ID: 23814278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Mechanisms of heavy metal cadmium tolerance in plants].
    Zhang J; Shu WS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):1-8. PubMed ID: 16477124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Trends in Enhancing the Resistance of Cultivated Plants to Heavy Metal Stress by Transgenesis and Transcriptional Programming.
    Belykh ES; Maystrenko TA; Velegzhaninov IO
    Mol Biotechnol; 2019 Oct; 61(10):725-741. PubMed ID: 31372919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of nitric oxide in plant responses to heavy metal stress: exogenous application versus endogenous production.
    Terrón-Camero LC; Peláez-Vico MÁ; Del-Val C; Sandalio LM; Romero-Puertas MC
    J Exp Bot; 2019 Aug; 70(17):4477-4488. PubMed ID: 31125416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carcinogenic effects of heavy metals by inducing dysregulation of microRNAs: A review.
    Aalami AH; Hoseinzadeh M; Hosseini Manesh P; Jiryai Sharahi A; Kargar Aliabadi E
    Mol Biol Rep; 2022 Dec; 49(12):12227-12238. PubMed ID: 36269534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of microRNAs in aluminum stress in plants.
    He H; He L; Gu M
    Plant Cell Rep; 2014 Jun; 33(6):831-6. PubMed ID: 24413694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue-specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants.
    Çelik Ö; Akdaş EY
    Ecotoxicol Environ Saf; 2019 Apr; 170():682-690. PubMed ID: 30580162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of ROS and auxin in plant response to metal-mediated stress.
    Yuan HM; Liu WC; Jin Y; Lu YT
    Plant Signal Behav; 2013 Jul; 8(7):e24671. PubMed ID: 23603941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emerging mechanisms for heavy metal transport in plants.
    Williams LE; Pittman JK; Hall JL
    Biochim Biophys Acta; 2000 May; 1465(1-2):104-26. PubMed ID: 10748249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus).
    Zhang XD; Meng JG; Zhao KX; Chen X; Yang ZM
    Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant abiotic stress response and nutrient use efficiency.
    Gong Z; Xiong L; Shi H; Yang S; Herrera-Estrella LR; Xu G; Chao DY; Li J; Wang PY; Qin F; Li J; Ding Y; Shi Y; Wang Y; Yang Y; Guo Y; Zhu JK
    Sci China Life Sci; 2020 May; 63(5):635-674. PubMed ID: 32246404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The role of miR398 in plant stress responses].
    Ding YF; Wang GY; Fu YP; Zhu C
    Yi Chuan; 2010 Feb; 32(2):129-34. PubMed ID: 20176556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arbuscular mycorrhiza and heavy metal tolerance.
    Hildebrandt U; Regvar M; Bothe H
    Phytochemistry; 2007 Jan; 68(1):139-46. PubMed ID: 17078985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range.
    Korshunova YO; Eide D; Clark WG; Guerinot ML; Pakrasi HB
    Plant Mol Biol; 1999 May; 40(1):37-44. PubMed ID: 10394943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNAs: Tiny, powerful players of metal stress responses in plants.
    Srivastava S; Suprasanna P
    Plant Physiol Biochem; 2021 Sep; 166():928-938. PubMed ID: 34246107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review.
    Adrees M; Ali S; Rizwan M; Zia-Ur-Rehman M; Ibrahim M; Abbas F; Farid M; Qayyum MF; Irshad MK
    Ecotoxicol Environ Saf; 2015 Sep; 119():186-97. PubMed ID: 26004359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity.
    Khan IU; Rono JK; Zhang BQ; Liu XS; Wang MQ; Wang LL; Wu XC; Chen X; Cao HW; Yang ZM
    Ecotoxicol Environ Saf; 2019 Jul; 175():8-18. PubMed ID: 30878662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.