BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32003999)

  • 21. Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Computational Methods and Quantum Refinement.
    Cao L; Caldararu O; Ryde U
    J Phys Chem B; 2017 Sep; 121(35):8242-8262. PubMed ID: 28783353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reductive Elimination of H2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme.
    Lukoyanov D; Khadka N; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2016 Aug; 138(33):10674-83. PubMed ID: 27529724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum Mechanics/Molecular Mechanics Study of Resting-State Vanadium Nitrogenase: Molecular and Electronic Structure of the Iron-Vanadium Cofactor.
    Benediktsson B; Bjornsson R
    Inorg Chem; 2020 Aug; 59(16):11514-11527. PubMed ID: 32799489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic Understanding of N
    Harris DF; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM
    Biochemistry; 2018 Oct; 57(39):5706-5714. PubMed ID: 30183278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase.
    Jiang H; Svensson OKG; Ryde U
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is there computational support for an unprotonated carbon in the E
    Siegbahn PEM
    J Comput Chem; 2018 May; 39(12):743-747. PubMed ID: 29265384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ENDOR characterization of a synthetic diiron hydrazido complex as a model for nitrogenase intermediates.
    Lees NS; McNaughton RL; Gregory WV; Holland PL; Hoffman BM
    J Am Chem Soc; 2008 Jan; 130(2):546-55. PubMed ID: 18092774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An organometallic intermediate during alkyne reduction by nitrogenase.
    Lee HI; Igarashi RY; Laryukhin M; Doan PE; Dos Santos PC; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2004 Aug; 126(31):9563-9. PubMed ID: 15291559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride State, the E(4)(4H) Janus Intermediate.
    Lukoyanov D; Khadka N; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2016 Feb; 138(4):1320-7. PubMed ID: 26788586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamically Favourable States in the Reaction of Nitrogenase without Dissociation of any Sulfide Ligand.
    Jiang H; Ryde U
    Chemistry; 2022 Mar; 28(14):e202103933. PubMed ID: 35006641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Putative reaction mechanism of nitrogenase with a half-dissociated S2B ligand.
    Jiang H; Ryde U
    Dalton Trans; 2024 Jun; ():. PubMed ID: 38916132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Density functional theory calculations and exploration of a possible mechanism of N2 reduction by nitrogenase.
    Huniar U; Ahlrichs R; Coucouvanis D
    J Am Chem Soc; 2004 Mar; 126(8):2588-601. PubMed ID: 14982469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights into the reaction capabilities of His
    Dance I
    J Inorg Biochem; 2017 Apr; 169():32-43. PubMed ID: 28104568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum-refinement studies of the bidentate ligand of V‑nitrogenase and the protonation state of CO-inhibited Mo‑nitrogenase.
    Bergmann J; Oksanen E; Ryde U
    J Inorg Biochem; 2021 Jun; 219():111426. PubMed ID: 33756394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How feasible is the reversible S-dissociation mechanism for the activation of FeMo-co, the catalytic site of nitrogenase?
    Dance I
    Dalton Trans; 2019 Jan; 48(4):1251-1262. PubMed ID: 30607401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FeMo cofactor of nitrogenase: a density functional study of states M(N), M(OX), M(R), and M(I).
    Lovell T; Li J; Liu T; Case DA; Noodleman L
    J Am Chem Soc; 2001 Dec; 123(49):12392-410. PubMed ID: 11734043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton Transfer Pathways in Nitrogenase with and without Dissociated S2B.
    Jiang H; Svensson OKG; Cao L; Ryde U
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202208544. PubMed ID: 35920055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N
    Raugei S; Seefeldt LC; Hoffman BM
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):E10521-E10530. PubMed ID: 30355772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation and protonation of dinitrogen at the FeMo cofactor of nitrogenase.
    Kästner J; Hemmen S; Blöchl PE
    J Chem Phys; 2005 Aug; 123(7):074306. PubMed ID: 16229569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism for N
    Siegbahn PEM
    Phys Chem Chem Phys; 2023 Sep; 25(35):23602-23613. PubMed ID: 37622205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.