These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 32004029)
21. Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering. Zhu L; Li W; Ding F Nanoscale; 2019 Mar; 11(10):4248-4257. PubMed ID: 30623946 [TBL] [Abstract][Full Text] [Related]
22. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Fu B; Tang G; Li Y Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205 [TBL] [Abstract][Full Text] [Related]
23. Observation of hydrodynamic plasmons and energy waves in graphene. Zhao W; Wang S; Chen S; Zhang Z; Watanabe K; Taniguchi T; Zettl A; Wang F Nature; 2023 Feb; 614(7949):688-693. PubMed ID: 36813893 [TBL] [Abstract][Full Text] [Related]
24. Multiband Mechanism for the Sign Reversal of Coulomb Drag Observed in Double Bilayer Graphene Heterostructures. Zarenia M; Hamilton AR; Peeters FM; Neilson D Phys Rev Lett; 2018 Jul; 121(3):036601. PubMed ID: 30085815 [TBL] [Abstract][Full Text] [Related]
25. Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation. Kuleyev II; Kuleyev IG J Phys Condens Matter; 2019 Sep; 31(37):375701. PubMed ID: 31167176 [TBL] [Abstract][Full Text] [Related]
26. Phonon thermal transport in a class of graphene allotropes from first principles. Yang X; Dai Z; Zhao Y; Meng S Phys Chem Chem Phys; 2018 Jun; 20(23):15980-15985. PubMed ID: 29850727 [TBL] [Abstract][Full Text] [Related]
27. Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons. Xie G; Shen Y Phys Chem Chem Phys; 2015 Apr; 17(14):8822-7. PubMed ID: 25743638 [TBL] [Abstract][Full Text] [Related]
28. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor. Jin JS; Lee JS J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127 [TBL] [Abstract][Full Text] [Related]
29. Model of electron transport in dense plasmas spanning temperature regimes. Shaffer NR; Starrett CE Phys Rev E; 2020 May; 101(5-1):053204. PubMed ID: 32575252 [TBL] [Abstract][Full Text] [Related]
30. Giant magnetodrag in graphene at charge neutrality. Titov M; Gorbachev RV; Narozhny BN; Tudorovskiy T; Schütt M; Ostrovsky PM; Gornyi IV; Mirlin AD; Katsnelson MI; Novoselov KS; Geim AK; Ponomarenko LA Phys Rev Lett; 2013 Oct; 111(16):166601. PubMed ID: 24182287 [TBL] [Abstract][Full Text] [Related]
31. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study. Qin Z; Qin G; Zuo X; Xiong Z; Hu M Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111 [TBL] [Abstract][Full Text] [Related]
32. Tunable Ultrafast Thermal Relaxation in Graphene Measured by Continuous-Wave Photomixing. Jadidi MM; Suess RJ; Tan C; Cai X; Watanabe K; Taniguchi T; Sushkov AB; Mittendorff M; Hone J; Drew HD; Fuhrer MS; Murphy TE Phys Rev Lett; 2016 Dec; 117(25):257401. PubMed ID: 28036204 [TBL] [Abstract][Full Text] [Related]
33. Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene. Lee BS J Phys Condens Matter; 2018 Jul; 30(29):295302. PubMed ID: 29873305 [TBL] [Abstract][Full Text] [Related]
34. Quantum Hall effect near the charge neutrality point in a two-dimensional electron-hole system. Gusev GM; Olshanetsky EB; Kvon ZD; Mikhailov NN; Dvoretsky SA; Portal JC Phys Rev Lett; 2010 Apr; 104(16):166401. PubMed ID: 20482069 [TBL] [Abstract][Full Text] [Related]
35. Anomalous spectral features of a neutral bilayer graphene. Cheng CM; Xie LF; Pachoud A; Moser HO; Chen W; Wee ATS; Castro Neto AH; Tsuei KD; Özyilmaz B Sci Rep; 2015 May; 5():10025. PubMed ID: 25985064 [TBL] [Abstract][Full Text] [Related]
36. Lattice thermal conductivity of borophene from first principle calculation. Xiao H; Cao W; Ouyang T; Guo S; He C; Zhong J Sci Rep; 2017 Apr; 7():45986. PubMed ID: 28374853 [TBL] [Abstract][Full Text] [Related]
37. Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: Charge Density Waves and Coupled Wigner Crystals. Zarenia M; Neilson D; Peeters FM Sci Rep; 2017 Sep; 7(1):11510. PubMed ID: 28912465 [TBL] [Abstract][Full Text] [Related]
38. Lateral and flexural phonon thermal transport in graphene and stanene bilayers. Hong Y; Zhu C; Ju M; Zhang J; Zeng XC Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566 [TBL] [Abstract][Full Text] [Related]
39. Ultrafast electron diffuse scattering as a tool for studying phonon transport: Phonon hydrodynamics and second sound oscillations. Kremeyer L; Britt TL; Siwick BJ; Huberman SC Struct Dyn; 2024 Mar; 11(2):024101. PubMed ID: 38482073 [TBL] [Abstract][Full Text] [Related]
40. Hot electron injection from graphene quantum dots to TiO₂. Williams KJ; Nelson CA; Yan X; Li LS; Zhu X ACS Nano; 2013 Feb; 7(2):1388-94. PubMed ID: 23347000 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]