These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 32004296)

  • 1. Low power charge state depletion nanoscopy of the defect in diamonds with a pulsed laser excitation.
    Li DF; Du B; Chen XD; Guo GC; Sun FW
    Opt Lett; 2020 Feb; 45(3):730-733. PubMed ID: 32004296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge state depletion nanoscopy with a nitrogen-vacancy center in nanodiamonds.
    Wang QY; Wang ZH; Du B; Chen XD; Guo GC; Sun FW
    Opt Lett; 2022 Jan; 47(1):66-69. PubMed ID: 34951884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.
    Chen XD; Li S; Du B; Dong Y; Wang ZH; Guo GC; Sun FW
    Opt Lett; 2018 Feb; 43(4):699-702. PubMed ID: 29444056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds.
    Barbiero M; Castelletto S; Gan X; Gu M
    Light Sci Appl; 2017 Nov; 6(11):e17085. PubMed ID: 30167213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.
    Hsiao WW; Hui YY; Tsai PC; Chang HC
    Acc Chem Res; 2016 Mar; 49(3):400-7. PubMed ID: 26882283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures.
    Siyushev P; Pinto H; Vörös M; Gali A; Jelezko F; Wrachtrup J
    Phys Rev Lett; 2013 Apr; 110(16):167402. PubMed ID: 23679637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential.
    Karaveli S; Gaathon O; Wolcott A; Sakakibara R; Shemesh OA; Peterka DS; Boyden ES; Owen JS; Yuste R; Englund D
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3938-43. PubMed ID: 27035935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulated emission assisted time-gated detection of a solid-state spin.
    Zhao BW; Chen XD; Wang EH; Zheng Y; Du B; Li S; Dong Y; Guo GC; Sun FW
    Appl Opt; 2020 Jul; 59(21):6291-6295. PubMed ID: 32749291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Background-free two-photon fluorescence readout via a three-photon charge-state modulation of nitrogen-vacancy centers in diamond.
    Fedotov IV; Zheltikov AM
    Opt Lett; 2019 Aug; 44(15):3737-3740. PubMed ID: 31368956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout.
    Hopper DA; Grote RR; Parks SM; Bassett LC
    ACS Nano; 2018 May; 12(5):4678-4686. PubMed ID: 29652481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds.
    Ryan RG; Stacey A; O'Donnell KM; Ohshima T; Johnson BC; Hollenberg LCL; Mulvaney P; Simpson DA
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):13143-13149. PubMed ID: 29557161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical patterning of trapped charge in nitrogen-doped diamond.
    Jayakumar H; Henshaw J; Dhomkar S; Pagliero D; Laraoui A; Manson NB; Albu R; Doherty MW; Meriles CA
    Nat Commun; 2016 Aug; 7():12660. PubMed ID: 27573190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Dark-State Dynamics of a Single Nitrogen-Vacancy Center in Nanodiamond by Auto-Correlation Spectroscopy: Photonionization and Recharging.
    Zhang M; Li BY; Liu J
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33920225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.
    Dhomkar S; Jayakumar H; Zangara PR; Meriles CA
    Nano Lett; 2018 Jun; 18(6):4046-4052. PubMed ID: 29733616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon microperimetry with picosecond pulses.
    Marzejon MJ; Kornaszewski Ł; Bogusławski J; Ciąćka P; Martynow M; Palczewska G; Maćkowski S; Palczewski K; Wojtkowski M; Komar K
    Biomed Opt Express; 2021 Jan; 12(1):462-479. PubMed ID: 33659083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation.
    Ozawa A; Zhao Z; Kuwata-Gonokami M; Kobayashi Y
    Opt Express; 2015 Jun; 23(12):15107-18. PubMed ID: 26193495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground-State Depletion Nanoscopy of Nitrogen-Vacancy Centres in Nanodiamonds.
    Storterboom J; Barbiero M; Castelletto S; Gu M
    Nanoscale Res Lett; 2021 Mar; 16(1):44. PubMed ID: 33689036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon excitation of 2,5-diphenyloxazole using a low power green solid state laser.
    Luchowski R
    Chem Phys Lett; 2011 Jan; 501(4-6):572-574. PubMed ID: 21399731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence.
    Lange B; Cordes J; Brinkmann R
    Lasers Surg Med; 2015 Nov; 47(9):737-44. PubMed ID: 26392115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.
    Arroyo-Camejo S; Adam MP; Besbes M; Hugonin JP; Jacques V; Greffet JJ; Roch JF; Hell SW; Treussart F
    ACS Nano; 2013 Dec; 7(12):10912-9. PubMed ID: 24245613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.