These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32004372)

  • 1. Towards intercrop ideotypes: non-random trait assembly can promote overyielding and stability of species proportion in simulated legume-based mixtures.
    Louarn G; Barillot R; Combes D; Escobar-Gutiérrez A
    Ann Bot; 2020 Sep; 126(4):671-685. PubMed ID: 32004372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid transgenerational adaptation in response to intercropping reduces competition.
    Stefan L; Engbersen N; Schöb C
    Elife; 2022 Sep; 11():. PubMed ID: 36097813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource-use efficiency drives overyielding via enhanced complementarity.
    Mason NWH; Orwin KH; Lambie S; Waugh D; Pronger J; Carmona CP; Mudge P
    Oecologia; 2020 Aug; 193(4):995-1010. PubMed ID: 32844244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting effects of intraspecific trait variation on trait-based niches and performance of legumes in plant mixtures.
    Roscher C; Schumacher J; Schmid B; Schulze ED
    PLoS One; 2015; 10(3):e0119786. PubMed ID: 25781938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The choice of the white clover population alters overyielding of mixtures with perennial ryegrass and chicory and underlying processes.
    Nölke I; Tonn B; Komainda M; Heshmati S; Isselstein J
    Sci Rep; 2022 Jan; 12(1):1155. PubMed ID: 35064196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overyielding and species diversity: what should we expect?
    Beckage B; Gross LJ
    New Phytol; 2006; 172(1):140-8. PubMed ID: 16945096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementarity among four highly productive grassland species depends on resource availability.
    Roscher C; Schmid B; Kolle O; Schulze ED
    Oecologia; 2016 Jun; 181(2):571-82. PubMed ID: 26932467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass-legume mixture.
    Ball KR; Power SA; Brien C; Woodin S; Jewell N; Berger B; Pendall E
    PLoS One; 2020; 15(10):e0239673. PubMed ID: 33027289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grass-legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years.
    Helgadóttir Á; Suter M; Gylfadóttir TÓ; Kristjánsdóttir TA; Lüscher A
    Ann Bot; 2018 Aug; 122(2):337-348. PubMed ID: 29790908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal Differentiation of Resource Capture and Biomass Accumulation as a Driver of Yield Increase in Intercropping.
    Engbersen N; Brooker RW; Stefan L; Studer B; Schöb C
    Front Plant Sci; 2021; 12():668803. PubMed ID: 34122489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased plant carbon translocation linked to overyielding in grassland species mixtures.
    De Deyn GB; Quirk H; Oakley S; Ostle NJ; Bardgett RD
    PLoS One; 2012; 7(9):e45926. PubMed ID: 23049893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures.
    Siebenkäs A; Schumacher J; Roscher C
    PLoS One; 2016; 11(6):e0158110. PubMed ID: 27341495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Legume species differ in the responses of their functional traits to plant diversity.
    Roscher C; Schmid B; Buchmann N; Weigelt A; Schulze ED
    Oecologia; 2011 Feb; 165(2):437-52. PubMed ID: 20680645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences for traits associated with early N acquisition in a grain legume and early complementarity in grain legume-triticale mixtures.
    Carton N; Naudin C; Piva G; Baccar R; Corre-Hellou G
    AoB Plants; 2018 Feb; 10(1):ply001. PubMed ID: 29449911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced light interception and light use efficiency explain overyielding in young tree communities.
    Williams LJ; Butler EE; Cavender-Bares J; Stefanski A; Rice KE; Messier C; Paquette A; Reich PB
    Ecol Lett; 2021 May; 24(5):996-1006. PubMed ID: 33657676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs.
    Bessler H; Temperton VM; Roscher C; Buchmann N; Schmid B; Schulze ED; Weisser WW; Engels C
    Ecology; 2009 Jun; 90(6):1520-30. PubMed ID: 19569367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time.
    Ashworth AJ; Toler HD; Allen FL; Augé RM
    PLoS One; 2018; 13(7):e0200274. PubMed ID: 29990337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial complementarity in tree crowns explains overyielding in species mixtures.
    Williams LJ; Paquette A; Cavender-Bares J; Messier C; Reich PB
    Nat Ecol Evol; 2017 Mar; 1(4):63. PubMed ID: 28812675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant species richness and functional composition drive overyielding in a six-year grassland experiment.
    Marquard E; Weigelt A; Temperton VM; Roscher C; Schumacher J; Buchmann N; Fischer M; Weisser WW; Schmid B
    Ecology; 2009 Dec; 90(12):3290-302. PubMed ID: 20120799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional, stabilizing, and disruptive trait selection as alternative mechanisms for plant community assembly.
    Rolhauser AG; Pucheta E
    Ecology; 2017 Mar; 98(3):668-677. PubMed ID: 28036095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.