BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32004845)

  • 21. Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus.
    Zhou GJ; Peng FQ; Yang B; Ying GG
    Ecotoxicol Environ Saf; 2013 Jan; 87():10-6. PubMed ID: 23116624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Higher biomolecules yield in phytoplankton under copper exposure.
    Silva JC; Echeveste P; Lombardi AT
    Ecotoxicol Environ Saf; 2018 Oct; 161():57-63. PubMed ID: 29859408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Humic acid alleviates the ecotoxicity of graphene-family materials on the freshwater microalgae Scenedesmus obliquus.
    Zhang Y; Meng T; Guo X; Yang R; Si X; Zhou J
    Chemosphere; 2018 Apr; 197():749-758. PubMed ID: 29407839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus: Insights from untargeted metabolomics.
    Wang L; Huang X; Lim DJ; Laserna AKC; Li SFY
    Sci Total Environ; 2019 Feb; 650(Pt 1):1239-1249. PubMed ID: 30308812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga-Scenedesmus obliquus XJ002.
    Ji X; Cheng J; Gong D; Zhao X; Qi Y; Su Y; Ma W
    Sci Total Environ; 2018 Aug; 633():593-599. PubMed ID: 29587228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The light-dependent lethal effects of 1,2-benzisothiazol-3(2H)-one and its biodegradation by freshwater microalgae.
    Wang XX; Zhang QQ; Wu YH; Dao GH; Zhang TY; Tao Y; Hu HY
    Sci Total Environ; 2019 Jul; 672():563-571. PubMed ID: 30970286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal processes of individual and a mixture of organic micropollutants in the presence of Scenedesmus obliquus.
    Wu K; Tizzani R; Zweers H; Rijnaarts H; Langenhoff A; Fernandes TV
    Sci Total Environ; 2022 Sep; 838(Pt 4):156526. PubMed ID: 35679938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal and metabolism of triclosan by three different microalgal species in aquatic environment.
    Wang S; Poon K; Cai Z
    J Hazard Mater; 2018 Jan; 342():643-650. PubMed ID: 28898861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus.
    Zhou GJ; Peng FQ; Zhang LJ; Ying GG
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2918-29. PubMed ID: 22327643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of benzo(a)pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: a comparative study useful for bioremediation.
    García de Llasera MP; Olmos-Espejel Jde J; Díaz-Flores G; Montaño-Montiel A
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3365-75. PubMed ID: 26490911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological effect of aqueous C
    Du C; Zhang B; He Y; Hu C; Ng QX; Zhang H; Ong CN; ZhifenLin
    J Hazard Mater; 2017 Feb; 324(Pt B):221-229. PubMed ID: 28340994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transformation and toxicity assessment of two UV filters using UV/H
    Peng M; Du E; Li Z; Li D; Li H
    Sci Total Environ; 2017 Dec; 603-604():361-369. PubMed ID: 28633113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species.
    Roy R; Parashar A; Bhuvaneshwari M; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2016 Jul; 176():161-71. PubMed ID: 27137676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accumulation of hexabromocyclododecane diastereomers and enantiomers in two microalgae, Spirulina subsalsa and Scenedesmus obliquus.
    Zhang Y; Sun H; Zhu H; Ruan Y; Liu F; Liu X
    Ecotoxicol Environ Saf; 2014 Jun; 104():136-42. PubMed ID: 24675442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attenuation pathways of erythromycin and biochemical responses related to algal growth and lipid synthesis in a microalga-effluent system.
    Wang X; Dou X; Wu J; Meng F
    Environ Res; 2021 Apr; 195():110873. PubMed ID: 33582131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses.
    Hamed SM; Selim S; Klöck G; AbdElgawad H
    Ecotoxicol Environ Saf; 2017 Oct; 144():19-25. PubMed ID: 28599127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium.
    Xiong JQ; Kurade MB; Jeon BH
    Environ Pollut; 2017 Jul; 226():486-493. PubMed ID: 28449968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioenergetic strategy for the biodegradation of p-cresol by the unicellular green alga Scenedesmus obliquus.
    Papazi A; Assimakopoulos K; Kotzabasis K
    PLoS One; 2012; 7(12):e51852. PubMed ID: 23251641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of monoculture and mixed culture (Scenedesmus obliquus and wild algae) for C, N, and P removal and lipid production.
    Qu Z; Duan P; Cao X; Liu M; Lin L; Li M
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20961-20968. PubMed ID: 31115809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1.
    Xin L; Hong-Ying H; Jia Y; Yin-Hu W
    Bioresour Technol; 2010 Dec; 101(24):9819-21. PubMed ID: 20716483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.