These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 32004964)
1. Citric acid-assisted accumulation of Ni and other metals by Odontarrhena muralis: Implications for phytoextraction and metal foliar distribution assessed by μ-SXRF. do Nascimento CWA; Hesterberg D; Tappero R; Nicholas S; da Silva FBV Environ Pollut; 2020 May; 260():114025. PubMed ID: 32004964 [TBL] [Abstract][Full Text] [Related]
2. Effects of exogenous citric acid on the concentration and spatial distribution of Ni, Zn, Co, Cr, Mn and Fe in leaves of Noccaea caerulescens grown on a serpentine soil. Nascimento CWAD; Hesterberg D; Tappero R J Hazard Mater; 2020 Nov; 398():122992. PubMed ID: 32512459 [TBL] [Abstract][Full Text] [Related]
3. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. Tappero R; Peltier E; Gräfe M; Heidel K; Ginder-Vogel M; Livi KJT; Rivers ML; Marcus MA; Chaney RL; Sparks DL New Phytol; 2007; 175(4):641-654. PubMed ID: 17688581 [TBL] [Abstract][Full Text] [Related]
4. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil. Broadhurst CL; Chaney RL Front Plant Sci; 2016; 7():451. PubMed ID: 27092164 [TBL] [Abstract][Full Text] [Related]
5. Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: a comparative field study. Tripti ; Kumar A; Maleva M; Borisova G; Chukina N; Morozova M; Kiseleva I Environ Geochem Health; 2021 Apr; 43(4):1401-1413. PubMed ID: 32347513 [TBL] [Abstract][Full Text] [Related]
6. Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Konakci N; Kislioglu MS; Sasmaz A Bull Environ Contam Toxicol; 2023 May; 110(6):97. PubMed ID: 37219689 [TBL] [Abstract][Full Text] [Related]
7. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. Cassina L; Tassi E; Morelli E; Giorgetti L; Remorini D; Chaney RL; Barbafieri M Int J Phytoremediation; 2011; 13 Suppl 1():90-101. PubMed ID: 22046753 [TBL] [Abstract][Full Text] [Related]
8. Influence of subsoil and soil volume on the accumulation of nickel by Paul ALD; Chaney RL Int J Phytoremediation; 2024; 26(6):928-935. PubMed ID: 38018123 [TBL] [Abstract][Full Text] [Related]
9. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Álvarez-López V; Prieto-Fernández Á; Cabello-Conejo MI; Kidd PS Sci Total Environ; 2016 Apr; 548-549():370-379. PubMed ID: 26803735 [TBL] [Abstract][Full Text] [Related]
10. Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence. do Nascimento CWA; Hesterberg D; Tappero R J Hazard Mater; 2021 Apr; 408():124813. PubMed ID: 33385722 [TBL] [Abstract][Full Text] [Related]
11. A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. Rosenkranz T; Hipfinger C; Ridard C; Puschenreiter M J Environ Manage; 2019 Jul; 242():522-528. PubMed ID: 31078125 [TBL] [Abstract][Full Text] [Related]
12. Degradation of Alyssum murale biomass in soil. Zhang L; Angle JS; Delorme T; Chaney RL Int J Phytoremediation; 2005; 7(3):169-76. PubMed ID: 16285409 [TBL] [Abstract][Full Text] [Related]
13. Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. Tognacchini A; Rosenkranz T; van der Ent A; Machinet GE; Echevarria G; Puschenreiter M J Environ Manage; 2020 Jan; 254():109798. PubMed ID: 31739090 [TBL] [Abstract][Full Text] [Related]
14. The effect of pH on metal accumulation in two Alyssum species. Kukier U; Peters CA; Chaney RL; Angle JS; Roseberg RJ J Environ Qual; 2004; 33(6):2090-102. PubMed ID: 15537931 [TBL] [Abstract][Full Text] [Related]
15. Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Chardot V; Massoura ST; Echevarria G; Reeves RD; Morel JL Int J Phytoremediation; 2005; 7(4):323-35. PubMed ID: 16463544 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Broadhurst CL; Chaney RL; Angle JS; Maugel TK; Erbe EF; Murphy CA Environ Sci Technol; 2004 Nov; 38(21):5797-802. PubMed ID: 15575302 [TBL] [Abstract][Full Text] [Related]
17. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Ghaderian SM; Mohtadi A; Rahiminejad MR; Baker AJ Environ Pollut; 2007 Jan; 145(1):293-8. PubMed ID: 16781032 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of plant growth regulators to increase nickel phytoextraction by Alyssum species. Cabello-Conejo MI; Centofanti T; Kidd PS; Prieto-Fernández A; Chaney RL Int J Phytoremediation; 2013; 15(4):365-75. PubMed ID: 23488002 [TBL] [Abstract][Full Text] [Related]
19. Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Roccotiello E; Serrano HC; Mariotti MG; Branquinho C Chemosphere; 2015 Jan; 119():1372-1378. PubMed ID: 24630460 [TBL] [Abstract][Full Text] [Related]
20. Improving the growth of Ni-hyperaccumulating plants in serpentine quarry tailings. Ghasemi Z; Ghaderian SM; Monterroso C; Kidd PS Int J Phytoremediation; 2018 Jun; 20(7):699-708. PubMed ID: 29723049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]