These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32005087)

  • 1. Recovery of copper and aluminium from coaxial cable wastes using comparative mechanical processes analysis.
    Martins TR; Mrozinski NS; Bertuol DA; Tanabe EH
    Environ Technol; 2021 Aug; 42(20):3205-3217. PubMed ID: 32005087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic separation of aluminium from residue of electric cables recycling process.
    Bedeković G; Trbović R
    Waste Manag; 2020 May; 108():21-27. PubMed ID: 32335485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct recovery of copper and aluminum from waste electric wires using a roll-type electrostatic separator.
    Salama A; Richard G; Medles K; Zeghloul T; Dascalescu L
    Waste Manag; 2018 Jun; 76():207-216. PubMed ID: 29605307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; He S; Gao Y; Peng J
    Waste Manag Res; 2019 Aug; 37(8):767-780. PubMed ID: 31218930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latest trends and challenges in PVC and copper recovery technologies for End-of-Life thin cables.
    Kumar H; Kumagai S; Saito Y; Yoshioka T
    Waste Manag; 2024 Feb; 174():400-410. PubMed ID: 38103350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator.
    Richard G; Touhami S; Zeghloul T; Dascalescu L
    Waste Manag; 2017 Feb; 60():112-122. PubMed ID: 27425863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.
    Li J; Xu Z; Zhou Y
    J Hazard Mater; 2008 May; 153(3):1308-13. PubMed ID: 17981393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition analysis and characterization of waste polyvinyl chloride (PVC) recovered from data cables.
    Suresh SS; Mohanty S; Nayak SK
    Waste Manag; 2017 Feb; 60():100-111. PubMed ID: 27594574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field.
    Li J; Lu H; Liu S; Xu Z
    J Hazard Mater; 2008 May; 153(1-2):269-75. PubMed ID: 17900802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical recycling of waste electric and electronic equipment: a review.
    Cui J; Forssberg E
    J Hazard Mater; 2003 May; 99(3):243-63. PubMed ID: 12758010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.
    Jordão H; Sousa AJ; Carvalho MT
    Waste Manag; 2016 Feb; 48():366-373. PubMed ID: 26470828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy.
    Veit HM; Bernardes AM; Ferreira JZ; Tenório JA; de Fraga Malfatti C
    J Hazard Mater; 2006 Oct; 137(3):1704-9. PubMed ID: 16757116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries.
    Zhu X; Zhang C; Feng P; Yang X; Yang X
    Waste Manag; 2021 Jul; 131():20-30. PubMed ID: 34091235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.
    Senouci K; Medles K; Dascalescu L
    Waste Manag Res; 2013 Feb; 31(2):160-8. PubMed ID: 23129608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of copper and polyvinyl chloride from thin waste electric cables: A combined PVC-swelling and centrifugal approach.
    Xu J; Kumagai S; Kameda T; Saito Y; Takahashi K; Hayashi H; Yoshioka T
    Waste Manag; 2019 Apr; 89():27-36. PubMed ID: 31079740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation mechanism of polyvinyl chloride and copper components from swollen electric cables by mechanical agitation.
    Lu J; Xu J; Kumagai S; Kameda T; Saito Y; Yoshioka T
    Waste Manag; 2019 Jun; 93():54-62. PubMed ID: 31235057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.
    Jiang W; Jia L; Zhen-Ming X
    J Hazard Mater; 2009 Jan; 161(1):257-62. PubMed ID: 18554788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.