These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32005833)

  • 1. Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst.
    Wang X; Peng X; Chen W; Liu G; Zheng A; Zheng L; Ni J; Au CT; Jiang L
    Nat Commun; 2020 Jan; 11(1):653. PubMed ID: 32005833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient ammonia synthesis at low temperature over a Ru-Co catalyst with dual atomically dispersed active centers.
    Peng X; Liu HX; Zhang Y; Huang ZQ; Yang L; Jiang Y; Wang X; Zheng L; Chang C; Au CT; Jiang L; Li J
    Chem Sci; 2021 Apr; 12(20):7125-7137. PubMed ID: 34123340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically Dispersed Cu Sites on Dual-Mesoporous N-Doped Carbon for Efficient Ammonia Electrosynthesis from Nitrate.
    Xu M; Xie Q; Duan D; Zhang Y; Zhou Y; Zhou H; Li X; Wang Y; Gao P; Ye W
    ChemSusChem; 2022 Jun; 15(11):e202200231. PubMed ID: 35384362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically dispersed Au
    Wang X; Wang W; Qiao M; Wu G; Chen W; Yuan T; Xu Q; Chen M; Zhang Y; Wang X; Wang J; Ge J; Hong X; Li Y; Wu Y; Li Y
    Sci Bull (Beijing); 2018 Oct; 63(19):1246-1253. PubMed ID: 36658862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dinitrogen cleavage and hydrogenation to ammonia with a uranium complex.
    Xin X; Douair I; Zhao Y; Wang S; Maron L; Zhu C
    Natl Sci Rev; 2023 Feb; 10(2):nwac144. PubMed ID: 36950222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacancy-enabled N
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Tada T; Hosono H
    Nature; 2020 Jul; 583(7816):391-395. PubMed ID: 32669696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Nitrogen Fixation Using Well-Defined Molecular Catalysts under Ambient or Mild Reaction Conditions.
    Tanabe Y; Nishibayashi Y
    Angew Chem Int Ed Engl; 2024 May; ():e202406404. PubMed ID: 38781115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N
    Wang G; Batista ER; Yang P
    Front Chem; 2022; 10():1051496. PubMed ID: 36688046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation.
    Han L; Liu X; Chen J; Lin R; Liu H; Lü F; Bak S; Liang Z; Zhao S; Stavitski E; Luo J; Adzic RR; Xin HL
    Angew Chem Int Ed Engl; 2019 Feb; 58(8):2321-2325. PubMed ID: 30548557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High Throughput Catalyst Design.
    Fuller J; An Q; Fortunelli A; Goddard WA
    Acc Chem Res; 2022 Apr; 55(8):1124-1134. PubMed ID: 35387450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex.
    Falcone M; Chatelain L; Scopelliti R; Živković I; Mazzanti M
    Nature; 2017 Jul; 547(7663):332-335. PubMed ID: 28726827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NH
    Reiners M; Baabe D; Münster K; Zaretzke MK; Freytag M; Jones PG; Coppel Y; Bontemps S; Rosal ID; Maron L; Walter MD
    Nat Chem; 2020 Aug; 12(8):740-746. PubMed ID: 32601410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus Modification of Iron: Mechanistic Insights into Ammonia Synthesis on Fe
    Almithn A
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential.
    Wang M; Liu S; Qian T; Liu J; Zhou J; Ji H; Xiong J; Zhong J; Yan C
    Nat Commun; 2019 Jan; 10(1):341. PubMed ID: 30664636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unlocking the Potential of MXene in Catalysis: Decorated Mo
    Sfeir A; Shuck CE; Fadel A; Marinova M; Vezin H; Dacquin JP; Gogotsi Y; Royer S; Laassiri S
    J Am Chem Soc; 2024 Jul; 146(29):20033-20044. PubMed ID: 38996197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaking the Linear Relation in the Dissociation of Nitrogen on Iron Surfaces.
    Liu D; Zhao W; Yuan Q
    Chemphyschem; 2022 Sep; 23(17):e202200147. PubMed ID: 35608395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the effect of metal loading on the performance of Co catalysts supported on mixed MgO-La
    Ronduda H; Zybert M; Patkowski W; Sobczak K; Moszyński D; Albrecht A; Sarnecki A; Raróg-Pilecka W
    RSC Adv; 2022 Nov; 12(52):33876-33888. PubMed ID: 36505722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium-based Loop for Ambient-Pressure Ammonia Synthesis in a Liquid Alloy-Salt Catalytic System.
    Tang Z; Meng X; Shi Y; Guan X
    ChemSusChem; 2021 Nov; 14(21):4697-4707. PubMed ID: 34467662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Insight into the Special Synergy of Bimetallic Site in Co/MoC Catalyst to Promote N
    Fang Z; Liang Y; Li Y; Ni B; Zhu J; Li Y; Huang S; Lin W; Zhang Y
    Chemistry; 2024 Feb; 30(9):e202302900. PubMed ID: 38105290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.