BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 32005835)

  • 1. Surface protein imputation from single cell transcriptomes by deep neural networks.
    Zhou Z; Ye C; Wang J; Zhang NR
    Nat Commun; 2020 Jan; 11(1):651. PubMed ID: 32005835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Conjugation of Antibodies for the Simultaneous Detection of Surface Proteins and Transcriptome Analysis at a Single-Cell Level.
    Kleino I; Kekäläinen E; Lönnberg T
    Methods Mol Biol; 2020; 2184():31-45. PubMed ID: 32808216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scMultiGAN: cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks.
    Wang T; Zhao H; Xu Y; Wang Y; Shang X; Peng J; Xiao B
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell RNA-seq data analysis based on directed graph neural network.
    Feng X; Zhang H; Lin H; Long H
    Methods; 2023 Mar; 211():48-60. PubMed ID: 36804214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data.
    Xu F; Wang S; Dai X; Mundra PA; Zheng J
    Methods; 2021 May; 189():65-73. PubMed ID: 33039573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CITEViz: interactively classify cell populations in CITE-Seq via a flow cytometry-like gating workflow using R-Shiny.
    Kong GL; Nguyen TT; Rosales WK; Panikar AD; Cheney JHW; Lusardi TA; Yashar WM; Curtiss BM; Carratt SA; Braun TP; Maxson JE
    BMC Bioinformatics; 2024 Apr; 25(1):142. PubMed ID: 38566005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.
    Shi Y; Wan J; Zhang X; Yin Y
    Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cell-type-specific genes in multimodal single-cell data using deep neural network algorithm.
    Qian W; Yang Z
    Comput Biol Med; 2023 Nov; 166():107498. PubMed ID: 37738895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute.
    Xu K; Cheong C; Veldsman WP; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37039664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline.
    Mikolajewicz N; Gacesa R; Aguilera-Uribe M; Brown KR; Moffat J; Han H
    Commun Biol; 2022 Oct; 5(1):1142. PubMed ID: 36307536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data.
    Arisdakessian C; Poirion O; Yunits B; Zhu X; Garmire LX
    Genome Biol; 2019 Oct; 20(1):211. PubMed ID: 31627739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Measurement of Surface Proteins and Gene Expression from Single Cells.
    Luo J; Erb CA; Chen K
    Methods Mol Biol; 2020; 2111():35-46. PubMed ID: 31933196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.