These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32005883)

  • 1. Dynamic channel selection in wireless communications via a multi-armed bandit algorithm using laser chaos time series.
    Takeuchi S; Hasegawa M; Kanno K; Uchida A; Chauvet N; Naruse M
    Sci Rep; 2020 Jan; 10(1):1574. PubMed ID: 32005883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable photonic reinforcement learning by time-division multiplexing of laser chaos.
    Naruse M; Mihana T; Hori H; Saigo H; Okamura K; Hasegawa M; Uchida A
    Sci Rep; 2018 Jul; 8(1):10890. PubMed ID: 30022085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast photonic reinforcement learning based on laser chaos.
    Naruse M; Terashima Y; Uchida A; Kim SJ
    Sci Rep; 2017 Aug; 7(1):8772. PubMed ID: 28821739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arm order recognition in multi-armed bandit problem with laser chaos time series.
    Narisawa N; Chauvet N; Hasegawa M; Naruse M
    Sci Rep; 2021 Feb; 11(1):4459. PubMed ID: 33627692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decision making for the multi-armed bandit problem using lag synchronization of chaos in mutually coupled semiconductor lasers.
    Mihana T; Mitsui Y; Takabayashi M; Kanno K; Sunada S; Naruse M; Uchida A
    Opt Express; 2019 Sep; 27(19):26989-27008. PubMed ID: 31674568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-delay signature concealment of chaos and ultrafast decision making in mutually coupled semiconductor lasers with a phase-modulated Sagnac loop.
    Ma Y; Xiang S; Guo X; Song Z; Wen A; Hao Y
    Opt Express; 2020 Jan; 28(2):1665-1678. PubMed ID: 32121874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient dynamic channel assignment through laser chaos: a multiuser parallel processing learning algorithm.
    Chen Z; Wang L; Xing C
    Sci Rep; 2023 Jan; 13(1):1353. PubMed ID: 36693886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Dynamic Spectrum Access in UAV Wireless Networks for Post-Disaster Area Surveillance System: A Multi-Player Multi-Armed Bandit Approach.
    Amrallah A; Mohamed EM; Tran GK; Sakaguchi K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gateway Selection in Millimeter Wave UAV Wireless Networks Using Multi-Player Multi-Armed Bandit.
    Mohamed EM; Hashima S; Aldosary A; Hatano K; Abdelghany MA
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser network decision making by lag synchronization of chaos in a ring configuration.
    Mihana T; Fujii K; Kanno K; Naruse M; Uchida A
    Opt Express; 2020 Dec; 28(26):40112-40130. PubMed ID: 33379544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decision making for large-scale multi-armed bandit problems using bias control of chaotic temporal waveforms in semiconductor lasers.
    Morijiri K; Mihana T; Kanno K; Naruse M; Uchida A
    Sci Rep; 2022 May; 12(1):8073. PubMed ID: 35577847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic decision-making for arbitrary-number-armed bandit problem utilizing parallel chaos generation.
    Peng J; Jiang N; Zhao A; Liu S; Zhang Y; Qiu K; Zhang Q
    Opt Express; 2021 Aug; 29(16):25290-25301. PubMed ID: 34614862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non Stationary Multi-Armed Bandit: Empirical Evaluation of a New Concept Drift-Aware Algorithm.
    Cavenaghi E; Sottocornola G; Stella F; Zanker M
    Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33807028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers.
    Lin FY; Tsai MC
    Opt Express; 2007 Jan; 15(2):302-11. PubMed ID: 19532245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overtaking method based on sand-sifter mechanism: Why do optimistic value functions find optimal solutions in multi-armed bandit problems?
    Ochi K; Kamiura M
    Biosystems; 2015 Sep; 135():55-65. PubMed ID: 26166266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-Learning EXP3 Multi-Armed Bandit Algorithm for Enhancing the Massive IoT-LoRaWAN Network Performance.
    Almarzoqi SA; Yahya A; Matar Z; Gomaa I
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An empirical evaluation of active inference in multi-armed bandits.
    Marković D; Stojić H; Schwöbel S; Kiebel SJ
    Neural Netw; 2021 Dec; 144():229-246. PubMed ID: 34507043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaos-based communications at high bit rates using commercial fibre-optic links.
    Argyris A; Syvridis D; Larger L; Annovazzi-Lodi V; Colet P; Fischer I; García-Ojalvo J; Mirasso CR; Pesquera L; Shore KA
    Nature; 2005 Nov; 438(7066):343-6. PubMed ID: 16292256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Multi-Channel Clustering in IEEE 802.11s Wireless Mesh Networks.
    Rethfeldt M; Brockmann T; Beichler B; Haubelt C; Timmermann D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-jamming communication for body area network using chaotic frequency hopping.
    Gopalakrishnan B; Bhagyaveni MA
    Healthc Technol Lett; 2017 Dec; 4(6):233-237. PubMed ID: 29383258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.