These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32006055)

  • 21. The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
    Greenup A; Peacock WJ; Dennis ES; Trevaskis B
    Ann Bot; 2009 Jun; 103(8):1165-72. PubMed ID: 19304997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants.
    Yeang HY
    J Exp Bot; 2013 Jul; 64(10):2643-52. PubMed ID: 23645867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals.
    Cao S; Luo X; Xu D; Tian X; Song J; Xia X; Chu C; He Z
    New Phytol; 2021 Jun; 230(5):1731-1745. PubMed ID: 33586137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses.
    Cuevas HE; Zhou C; Tang H; Khadke PP; Das S; Lin YR; Ge Z; Clemente T; Upadhyaya HD; Hash CT; Paterson AH
    Mol Biol Evol; 2016 Sep; 33(9):2417-28. PubMed ID: 27335143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Night-Break Experiments Shed Light on the Photoperiod1-Mediated Flowering.
    Pearce S; Shaw LM; Lin H; Cotter JD; Li C; Dubcovsky J
    Plant Physiol; 2017 Jun; 174(2):1139-1150. PubMed ID: 28408541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice.
    Zhang L; Li Q; Dong H; He Q; Liang L; Tan C; Han Z; Yao W; Li G; Zhao H; Xie W; Xing Y
    Sci Rep; 2015 Jan; 5():7663. PubMed ID: 25563494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic and Transcriptomic Analysis Reveal the Molecular Basis of Photoperiod-Regulated Flowering in Xishuangbanna Cucumber (
    Tian Z; Jahn M; Qin X; Obel HO; Yang F; Li J; Chen J
    Genes (Basel); 2021 Jul; 12(7):. PubMed ID: 34356080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte.
    Minow MAA; Ávila LM; Turner K; Ponzoni E; Mascheretti I; Dussault FM; Lukens L; Rossi V; Colasanti J
    J Exp Bot; 2018 May; 69(12):2937-2952. PubMed ID: 29688423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification of CCT genes in wheat (Triticum aestivum L.) and their expression analysis during vernalization.
    Zhang H; Jiao B; Dong F; Liang X; Zhou S; Wang H
    PLoS One; 2022; 17(1):e0262147. PubMed ID: 34986172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A light-regulated gene, TaLWD1L-A, affects flowering time in transgenic wheat (Triticum aestivum L.).
    Hu R; Xiao J; Zhang Q; Gu T; Chang J; Yang G; He G
    Plant Sci; 2020 Oct; 299():110623. PubMed ID: 32900433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation to the local environment by modifications of the photoperiod response in crops.
    Nakamichi N
    Plant Cell Physiol; 2015 Apr; 56(4):594-604. PubMed ID: 25432974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution and Dynamic Transcriptome of Key Genes of Photoperiodic Flowering Pathway in Water Spinach (
    Wang X; Hao Y; Altaf MA; Shu H; Cheng S; Wang Z; Zhu G
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics.
    Dong L; Fang C; Cheng Q; Su T; Kou K; Kong L; Zhang C; Li H; Hou Z; Zhang Y; Chen L; Yue L; Wang L; Wang K; Li Y; Gan Z; Yuan X; Weller JL; Lu S; Kong F; Liu B
    Nat Commun; 2021 Sep; 12(1):5445. PubMed ID: 34521854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation.
    Bu T; Lu S; Wang K; Dong L; Li S; Xie Q; Xu X; Cheng Q; Chen L; Fang C; Li H; Liu B; Weller JL; Kong F
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33558416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flowering time control in rice by introducing Arabidopsis clock-associated PSEUDO-RESPONSE REGULATOR 5.
    Nakamichi N; Kudo T; Makita N; Kiba T; Kinoshita T; Sakakibara H
    Biosci Biotechnol Biochem; 2020 May; 84(5):970-979. PubMed ID: 31985350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize.
    Lazakis CM; Coneva V; Colasanti J
    J Exp Bot; 2011 Oct; 62(14):4833-42. PubMed ID: 21730358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway.
    Liu H; Gu F; Dong S; Liu W; Wang H; Chen Z; Wang J
    Biochem Biophys Res Commun; 2016 Oct; 479(2):173-178. PubMed ID: 27620492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ubiquitination in the control of photoperiodic flowering.
    Piñeiro M; Jarillo JA
    Plant Sci; 2013 Jan; 198():98-109. PubMed ID: 23199691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops.
    Long Y; Wang C; Liu C; Li H; Pu A; Dong Z; Wei X; Wan X
    J Adv Res; 2024 Aug; 62():27-46. PubMed ID: 37739122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice.
    Zong W; Guo X; Zhang K; Chen L; Liu YG; Guo J
    J Exp Bot; 2024 Jul; 75(13):3762-3777. PubMed ID: 38779909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.