These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32006280)

  • 1. A Comprehensive Computational Platform to Guide Drug Development Using Graph-Based Signature Methods.
    Pires DEV; Portelli S; Rezende PM; Veloso WNP; Xavier JS; Karmakar M; Myung Y; Linhares JPV; Rodrigues CHM; Silk M; Ascher DB
    Methods Mol Biol; 2020; 2112():91-106. PubMed ID: 32006280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance.
    Pires DE; Blundell TL; Ascher DB
    Sci Rep; 2016 Jul; 6():29575. PubMed ID: 27384129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph convolutional networks for computational drug development and discovery.
    Sun M; Zhao S; Gilvary C; Elemento O; Zhou J; Wang F
    Brief Bioinform; 2020 May; 21(3):919-935. PubMed ID: 31155636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Drug Designing and Prediction Of Important Parameters Using in silico Methods- A Review.
    Khan T; Lawrence AJ; Azad I; Raza S; Joshi S; Khan AR
    Curr Comput Aided Drug Des; 2019; 15(5):384-397. PubMed ID: 30914032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning models for drug-target interactions: current knowledge and future directions.
    D'Souza S; Prema KV; Balaji S
    Drug Discov Today; 2020 Apr; 25(4):748-756. PubMed ID: 32171918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Convolutional Neural Network System to Discriminate Drug-Target Interactions.
    Hu S; Xia D; Su B; Chen P; Wang B; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1315-1324. PubMed ID: 31514149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KenDTI: An Ensemble Model for Predicting Drug-Target Interaction by Integrating Multi-Source Information.
    Yu Z; Lu J; Jin Y; Yang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1305-1314. PubMed ID: 33877984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSM-lig: a web server for assessing and comparing protein-small molecule affinities.
    Pires DE; Ascher DB
    Nucleic Acids Res; 2016 Jul; 44(W1):W557-61. PubMed ID: 27151202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of hidden allosteric sites as novel targets for allosteric drug design.
    Lu S; Ji M; Ni D; Zhang J
    Drug Discov Today; 2018 Feb; 23(2):359-365. PubMed ID: 29030241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User-Friendly Quantum Mechanics: Applications for Drug Discovery.
    Kotev M; Sarrat L; Gonzalez CD
    Methods Mol Biol; 2020; 2114():231-255. PubMed ID: 32016897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning.
    Pandurangan AP; Blundell TL
    Protein Sci; 2020 Jan; 29(1):247-257. PubMed ID: 31693276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery.
    Heifetz A; Southey M; Morao I; Townsend-Nicholson A; Bodkin MJ
    Methods Mol Biol; 2018; 1705():375-394. PubMed ID: 29188574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Docking Using Quantum Mechanical-Based Methods.
    Aucar MG; Cavasotto CN
    Methods Mol Biol; 2020; 2114():269-284. PubMed ID: 32016899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early phase drug discovery: cheminformatics and computational techniques in identifying lead series.
    Duffy BC; Zhu L; Decornez H; Kitchen DB
    Bioorg Med Chem; 2012 Sep; 20(18):5324-42. PubMed ID: 22938785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From drug target to leads--sketching a physicochemical pathway for lead molecule design in silico.
    Shaikh SA; Jain T; Sandhu G; Latha N; Jayaram B
    Curr Pharm Des; 2007; 13(34):3454-70. PubMed ID: 18220783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetic properties and in silico ADME modeling in drug discovery.
    Honório KM; Moda TL; Andricopulo AD
    Med Chem; 2013 Mar; 9(2):163-76. PubMed ID: 23016542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PfgPDI: Pocket feature-enabled graph neural network for protein-drug interaction prediction.
    Zhang Y; Zhou C
    J Bioinform Comput Biol; 2024 Apr; 22(2):2450004. PubMed ID: 38812467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Laboratory: Tools for Similarity-Based Drug Discovery.
    Lešnik S; Konc J
    Methods Mol Biol; 2020; 2089():1-28. PubMed ID: 31773644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Toxicology and Drug Discovery.
    Hasselgren C; Myatt GJ
    Methods Mol Biol; 2018; 1800():233-244. PubMed ID: 29934896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.