These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 32006281)
1. Systematic Exploration of Binding Modes of Ligands on Drug Targets. Hetényi C; Bálint M Methods Mol Biol; 2020; 2112():107-121. PubMed ID: 32006281 [TBL] [Abstract][Full Text] [Related]
2. Systematic exploration of multiple drug binding sites. Bálint M; Jeszenői N; Horváth I; van der Spoel D; Hetényi C J Cheminform; 2017 Dec; 9(1):65. PubMed ID: 29282592 [TBL] [Abstract][Full Text] [Related]
3. Blind docking of drug-sized compounds to proteins with up to a thousand residues. Hetényi C; van der Spoel D FEBS Lett; 2006 Feb; 580(5):1447-50. PubMed ID: 16460734 [TBL] [Abstract][Full Text] [Related]
4. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design. Chandramohan A; Krishnamurthy S; Larsson A; Nordlund P; Jansson A; Anand GS PLoS Comput Biol; 2016 Jun; 12(6):e1004840. PubMed ID: 27253209 [TBL] [Abstract][Full Text] [Related]
5. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling. Rana S; Sahoo AR; Majhi BK Mol Biosyst; 2016 Apr; 12(5):1586-99. PubMed ID: 26978009 [TBL] [Abstract][Full Text] [Related]
6. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015. Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018 [TBL] [Abstract][Full Text] [Related]
7. Negative allosteric modulators of cannabinoid receptor 2: protein modeling, binding site identification and molecular dynamics simulations in the presence of an orthosteric agonist. Pandey P; Roy KK; Doerksen RJ J Biomol Struct Dyn; 2020 Jan; 38(1):32-47. PubMed ID: 30652534 [TBL] [Abstract][Full Text] [Related]
8. Computational method to identify druggable binding sites that target protein-protein interactions. Li H; Kasam V; Tautermann CS; Seeliger D; Vaidehi N J Chem Inf Model; 2014 May; 54(5):1391-400. PubMed ID: 24762202 [TBL] [Abstract][Full Text] [Related]
9. Quantifying biological activity in chemical terms: a pharmacology primer to describe drug effect. Kenakin T ACS Chem Biol; 2009 Apr; 4(4):249-60. PubMed ID: 19193052 [TBL] [Abstract][Full Text] [Related]
10. Toward a unified scoring function for native state discrimination and drug-binding pocket recognition. Battisti A; Zamuner S; Sarti E; Laio A Phys Chem Chem Phys; 2018 Jun; 20(25):17148-17155. PubMed ID: 29900428 [TBL] [Abstract][Full Text] [Related]
11. Pocket extraction on proteins via the Voronoi diagram of spheres. Kim D; Cho CH; Cho Y; Ryu J; Bhak J; Kim DS J Mol Graph Model; 2008 Apr; 26(7):1104-12. PubMed ID: 18023220 [TBL] [Abstract][Full Text] [Related]
12. The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes. Mortier J; Rakers C; Bermudez M; Murgueitio MS; Riniker S; Wolber G Drug Discov Today; 2015 Jun; 20(6):686-702. PubMed ID: 25615716 [TBL] [Abstract][Full Text] [Related]
13. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites. Broomhead NK; Soliman ME Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788 [TBL] [Abstract][Full Text] [Related]
14. Dissimilar Ligands Bind in a Similar Fashion: A Guide to Ligand Binding-Mode Prediction with Application to CELPP Studies. Xu X; Zou X Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830201 [TBL] [Abstract][Full Text] [Related]
15. In silico carborane docking to proteins and potential drug targets. Calvaresi M; Zerbetto F J Chem Inf Model; 2011 Aug; 51(8):1882-96. PubMed ID: 21774557 [TBL] [Abstract][Full Text] [Related]
16. Molecular modeling of hydration in drug design. Mancera RL Curr Opin Drug Discov Devel; 2007 May; 10(3):275-80. PubMed ID: 17554853 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Protein-Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations. Clark AJ; Tiwary P; Borrelli K; Feng S; Miller EB; Abel R; Friesner RA; Berne BJ J Chem Theory Comput; 2016 Jun; 12(6):2990-8. PubMed ID: 27145262 [TBL] [Abstract][Full Text] [Related]
18. Active site driven ligand design: an evolutionary approach. Bandyopadhyay S; Bagchi A; Maulik U J Bioinform Comput Biol; 2005 Oct; 3(5):1053-70. PubMed ID: 16278947 [TBL] [Abstract][Full Text] [Related]
19. Suitability of MMGBSA for the selection of correct ligand binding modes from docking results. Ahinko M; Niinivehmas S; Jokinen E; Pentikäinen OT Chem Biol Drug Des; 2019 Apr; 93(4):522-538. PubMed ID: 30468569 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of protein interactions: co-crystalized protein-protein interfaces are nearly as good as holo proteins in rigid-body ligand docking. Belkin S; Kundrotas PJ; Vakser IA J Comput Aided Mol Des; 2018 Jul; 32(7):769-779. PubMed ID: 30003468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]