These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32006327)

  • 1. Coupled modeling using PRZM/RICEWQ and SWAT for the North Tiaoxi Watershed.
    Cheng Y; Zhou J; Liao J; Mao D; Chen W; Shan Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12635-12645. PubMed ID: 32006327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling field-scale and watershed models for regulatory modeling of pesticide aquatic exposures in streams.
    Ghebremichael L; Chen W; Jacobson A; Roy C; Perkins DB; Brain R
    Integr Environ Assess Manag; 2022 Nov; 18(6):1678-1693. PubMed ID: 35212130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California.
    Luo Y; Zhang X; Liu X; Ficklin D; Zhang M
    Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating pesticide leaching and runoff in rice paddies with the RICEWQ-VADOFT model.
    Miao Z; Cheplick MJ; Williams MW; Trevisan M; Padovani L; Gennari M; Ferrero A; Vidotto F; Capri E
    J Environ Qual; 2003; 32(6):2189-99. PubMed ID: 14674541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling spray drift and runoff-related inputs of pesticides to receiving water.
    Zhang X; Luo Y; Goh KS
    Environ Pollut; 2018 Mar; 234():48-58. PubMed ID: 29156441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.
    Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ
    J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.
    Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H
    Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of groundwater pesticide exposure modeling scenarios for vulnerable spring and winter wheat-growing areas.
    Padilla L; Winchell M; Peranginangin N; Grant S
    Integr Environ Assess Manag; 2017 Nov; 13(6):992-1006. PubMed ID: 28266137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research and application progresses on rice water quality (RICEWQ)model.].
    He WY; Mao M
    Ying Yong Sheng Tai Xue Bao; 2019 Nov; 30(11):3963-3970. PubMed ID: 31833710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed.
    Luo Y; Zhang M
    J Environ Qual; 2009; 38(2):664-74. PubMed ID: 19244487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of agricultural pesticide inert ingredient transport following modeling approach: Case study of two formulation agents in Sacramento River watershed.
    Tu LH; Grieneisen ML; Wang R; Watanabe H; Zhang M
    J Environ Manage; 2023 Mar; 330():117123. PubMed ID: 36586371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated assessment of climate change impact on surface runoff contamination by pesticides.
    Gagnon P; Sheedy C; Rousseau AN; Bourgeois G; Chouinard G
    Integr Environ Assess Manag; 2016 Jul; 12(3):559-71. PubMed ID: 26331624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of thiobencarb runoff from rice farming practices in a California watershed using an integrated RiceWQ-AnnAGNPS system.
    Wang R; Bingner RL; Yuan Y; Locke M; Herring G; Denton D; Zhang M
    Sci Total Environ; 2021 May; 767():144898. PubMed ID: 33550063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive sampling and ecohydrologic modeling to investigate pesticide surface water loading in the Zollner Creek watershed, Oregon, USA.
    Janney P; Jenkins J
    Sci Total Environ; 2022 May; 819():152955. PubMed ID: 35007592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns.
    Wang R; Yuan Y; Yen H; Grieneisen M; Arnold J; Wang D; Wang C; Zhang M
    Sci Total Environ; 2019 Jun; 669():512-526. PubMed ID: 30884273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed.
    Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H
    Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.