These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32006338)

  • 1. Enhancement of Aeribacillus pallidus strain VP3 lipase catalytic activity through optimization of medium composition using Box-Behnken design and its application in detergent formulations.
    Ktata A; Karray A; Mnif I; Bezzine S
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12755-12766. PubMed ID: 32006338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification, biochemical and molecular study of lipase producing from a newly thermoalkaliphilic Aeribacillus pallidus for oily wastewater treatment.
    Ktata A; Krayem N; Aloulou A; Bezzine S; Sayari A; Chamkha M; Karray A
    J Biochem; 2020 Jan; 167(1):89-99. PubMed ID: 31599938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest.
    Mechri S; Ben Elhoul Berrouina M; Omrane Benmrad M; Zaraî Jaouadi N; Rekik H; Moujehed E; Chebbi A; Sayadi S; Chamkha M; Bejar S; Jaouadi B
    Int J Biol Macromol; 2017 Jan; 94(Pt A):221-232. PubMed ID: 27720758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A newly high alkaline lipase: an ideal choice for application in detergent formulations.
    Cherif S; Mnif S; Hadrich F; Abdelkafi S; Sayadi S
    Lipids Health Dis; 2011 Nov; 10():221. PubMed ID: 22123072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostable, alkaline and detergent-tolerant lipase from a newly isolated thermophilic Bacillus stearothermophilus.
    Ben Bacha A; Moubayed NM; Abid I
    Indian J Biochem Biophys; 2015 Apr; 52(2):179-88. PubMed ID: 26118130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R.
    Mechri S; Kriaa M; Ben Elhoul Berrouina M; Omrane Benmrad M; Zaraî Jaouadi N; Rekik H; Bouacem K; Bouanane-Darenfed A; Chebbi A; Sayadi S; Chamkha M; Bejar S; Jaouadi B
    Int J Biol Macromol; 2017 Aug; 101():383-397. PubMed ID: 28315440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application.
    Ruchi G; Anshu G; Khare SK
    Bioresour Technol; 2008 Jul; 99(11):4796-802. PubMed ID: 17976982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green ecofriendly enhancement of cellulase productivity using agricultural wastes by Aspergillus terreus MN901491: statistical designs and detergent ability on cotton fabrics.
    Abdella MAA; Ahmed NE; Hasanin MS
    Microb Cell Fact; 2024 Apr; 23(1):109. PubMed ID: 38609920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM.
    Ebrahimpour A; Abd Rahman RN; Ean Ch'ng DH; Basri M; Salleh AB
    BMC Biotechnol; 2008 Dec; 8():96. PubMed ID: 19105837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of physical parameters for enhanced production of lipase from Staphylococcus hominis using response surface methodology.
    Behera AR; Veluppal A; Dutta K
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34277-34284. PubMed ID: 30712200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability.
    Chauhan M; Chauhan RS; Garlapati VK
    Biomed Res Int; 2013; 2013():374967. PubMed ID: 24106703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production.
    García-Silvera EE; Martínez-Morales F; Bertrand B; Morales-Guzmán D; Rosas-Galván NS; León-Rodríguez R; Trejo-Hernández MR
    Biotechnol Appl Biochem; 2018 Mar; 65(2):156-172. PubMed ID: 28444972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance.
    Fernández-Lorente G; Palomo JM; Mateo C; Munilla R; Ortiz C; Cabrera Z; Guisán JM; Fernandez-Lafuente R
    Biomacromolecules; 2006 Sep; 7(9):2610-5. PubMed ID: 16961324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical Experimental Design Optimization of Microbial Proteases Production under Co-Culture Conditions for Chitin Recovery from Speckled Shrimp
    Jabeur F; Mechri S; Kriaa M; Gharbi I; Bejaoui N; Sadok S; Jaouadi B
    Biomed Res Int; 2020; 2020():3707804. PubMed ID: 32090083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter optimization for thermostable lipase production and performance evaluation as prospective detergent additive.
    Sahoo RK; Das A; Gaur M; Sahu A; Sahoo S; Dey S; Rahman PKSM; Subudhi E
    Prep Biochem Biotechnol; 2020; 50(6):578-584. PubMed ID: 32011972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase of Pseudomonas guariconesis as an additive in laundry detergents and transesterification biocatalysts.
    Devi R; Madhavan Nampoothiri K; Sukumaran RK; Sindhu R; Arumugam M
    J Basic Microbiol; 2020 Feb; 60(2):112-125. PubMed ID: 31663625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23.
    Maharana AK; Singh SM
    J Basic Microbiol; 2018 Apr; 58(4):331-342. PubMed ID: 29442377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of physical conditions for the production of thermostable T1 lipase in Pichia guilliermondii strain SO using response surface methodology.
    Abu ML; Nooh HM; Oslan SN; Salleh AB
    BMC Biotechnol; 2017 Nov; 17(1):78. PubMed ID: 29126403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Neural Networks and Response Surface Methodology Approach for Optimization of an Eco-Friendly and Detergent-Stable Lipase Production from Actinomadura Keratinilytica Strain Cpt29.
    Semache N; Benamia F; Kerouaz B; Belhaj IS; Bounour S; Belghith H; Gargouri A; Ladjama A; Djeghaba Z
    Acta Chim Slov; 2021 Sep; 68(3):575-586. PubMed ID: 34897543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. α-Amylase production by Tepidimonas fonticaldi strain HB23: statistical optimization and compatibility study for use in detergent formulations.
    Allala F; Bouacem K; Boucherba N; Mechri S; Kriaa M; Arkoub-Djoudi W; Azzouz Z; Benallaoua S; Hacene H; Jaouadi B; Bouanane-Darenfed A
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):37164-37172. PubMed ID: 32705554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.