BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32006394)

  • 1. Preparation, Determination of Activity, and Biodistribution of Cholesterol-Containing Nuclease-Resistant siRNAs In Vivo.
    Chernikov IV; Meschaninova MI; Chernolovskaya EL
    Methods Mol Biol; 2020; 2115():57-77. PubMed ID: 32006394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models.
    Hatakeyama H; Wu SY; Mangala LS; Lopez-Berestein G; Sood AK
    Methods Mol Biol; 2016; 1402():189-197. PubMed ID: 26721492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimeric Small Interfering RNAs and Their Cholesterol-Containing Conjugates Exhibit Improved Accumulation in Tumors, but Dramatically Reduced Silencing Activity.
    Chernikov IV; Gladkikh DV; Karelina UA; Meschaninova MI; Ven'yaminova AG; Vlassov VV; Chernolovskaya EL
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32325757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics.
    Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L
    Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models.
    Mangala LS; Rodriguez-Aguayo C; Bayraktar E; Jennings NB; Lopez-Berestein G; Sood AK
    Methods Mol Biol; 2021; 2372():157-168. PubMed ID: 34417750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier-free cellular uptake and the gene-silencing activity of the lipophilic siRNAs is strongly affected by the length of the linker between siRNA and lipophilic group.
    Petrova NS; Chernikov IV; Meschaninova MI; Dovydenko IS; Venyaminova AG; Zenkova MA; Vlassov VV; Chernolovskaya EL
    Nucleic Acids Res; 2012 Mar; 40(5):2330-44. PubMed ID: 22080508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting.
    De Paula D; Bentley MV; Mahato RI
    RNA; 2007 Apr; 13(4):431-56. PubMed ID: 17329355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive visualization of RNA delivery with 99mTc-radiolabeled small-interference RNA in tumor xenografts.
    Kang L; Wang RF; Yan P; Liu M; Zhang CL; Yu MM; Cui YG; Xu XJ
    J Nucl Med; 2010 Jun; 51(6):978-86. PubMed ID: 20484428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving siRNA Delivery In Vivo Through Lipid Conjugation.
    Osborn MF; Khvorova A
    Nucleic Acid Ther; 2018 Jun; 28(3):128-136. PubMed ID: 29746209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy.
    Lee JW; Choi J; Choi Y; Kim K; Yang Y; Kim SH; Yoon HY; Kwon IC
    J Control Release; 2022 Nov; 351():713-726. PubMed ID: 36152808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.
    Grzelinski M; Urban-Klein B; Martens T; Lamszus K; Bakowsky U; Höbel S; Czubayko F; Aigner A
    Hum Gene Ther; 2006 Jul; 17(7):751-66. PubMed ID: 16839274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and structural modifications of RNAi therapeutics.
    Ku SH; Jo SD; Lee YK; Kim K; Kim SH
    Adv Drug Deliv Rev; 2016 Sep; 104():16-28. PubMed ID: 26549145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipophilic 2'-O-Acetal Ester RNAs: Synthesis, Thermal Duplex Stability, Nuclease Resistance, Cellular Uptake, and siRNA Activity after Spontaneous Naked Delivery.
    Biscans A; Bertrand JR; Dubois J; Rüger J; Vasseur JJ; Sczakiel G; Dupouy C; Debart F
    Chembiochem; 2016 Nov; 17(21):2054-2062. PubMed ID: 27569765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of nuclease-resistant fork-like small interfering RNA (fsiRNA).
    Chernolovskaya EL; Zenkova MA
    Methods Mol Biol; 2013; 942():153-68. PubMed ID: 23027050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs.
    Aigner A
    J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I.
    Kim SI; Shin D; Choi TH; Lee JC; Cheon GJ; Kim KY; Park M; Kim M
    Mol Ther; 2007 Jun; 15(6):1145-52. PubMed ID: 17440441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery and biodistribution of siRNA for cancer therapy: challenges and future prospects.
    Seth S; Johns R; Templin MV
    Ther Deliv; 2012 Feb; 3(2):245-61. PubMed ID: 22834200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo.
    Ewe A; Przybylski S; Burkhardt J; Janke A; Appelhans D; Aigner A
    J Control Release; 2016 May; 230():13-25. PubMed ID: 27061141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes.
    Malek A; Merkel O; Fink L; Czubayko F; Kissel T; Aigner A
    Toxicol Appl Pharmacol; 2009 Apr; 236(1):97-108. PubMed ID: 19371615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic SiRNA Delivery: Progress and Prospects.
    Roberts TC; Ezzat K; El Andaloussi S; Weinberg MS
    Methods Mol Biol; 2016; 1364():291-310. PubMed ID: 26472459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.